{"title":"协变量为函数时的线性化最大秩相关估计","authors":"Wenchao Xu , Xinyu Zhang , Hua Liang","doi":"10.1016/j.jmva.2024.105301","DOIUrl":null,"url":null,"abstract":"<div><p>This paper extends the linearized maximum rank correlation (LMRC) estimation proposed by Shen et al. (2023) to the setting where the covariate is a function. However, this extension is nontrivial due to the difficulty of inverting the covariance operator, which may raise the ill-posed inverse problem, for which we integrate the functional principal component analysis to the LMRC procedure. The proposed estimator is robust to outliers in response and computationally efficient. We establish the rate of convergence of the proposed estimator, which is minimax optimal under certain smoothness assumptions. Furthermore, we extend the proposed estimation procedure to handle discretely observed functional covariates, including both sparse and dense sampling designs, and establish the corresponding rate of convergence. Simulation studies demonstrate that the proposed estimators outperform the other existing methods for some examples. Finally, we apply our method to a real data to illustrate its usefulness.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linearized maximum rank correlation estimation when covariates are functional\",\"authors\":\"Wenchao Xu , Xinyu Zhang , Hua Liang\",\"doi\":\"10.1016/j.jmva.2024.105301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper extends the linearized maximum rank correlation (LMRC) estimation proposed by Shen et al. (2023) to the setting where the covariate is a function. However, this extension is nontrivial due to the difficulty of inverting the covariance operator, which may raise the ill-posed inverse problem, for which we integrate the functional principal component analysis to the LMRC procedure. The proposed estimator is robust to outliers in response and computationally efficient. We establish the rate of convergence of the proposed estimator, which is minimax optimal under certain smoothness assumptions. Furthermore, we extend the proposed estimation procedure to handle discretely observed functional covariates, including both sparse and dense sampling designs, and establish the corresponding rate of convergence. Simulation studies demonstrate that the proposed estimators outperform the other existing methods for some examples. Finally, we apply our method to a real data to illustrate its usefulness.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X24000083\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000083","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Linearized maximum rank correlation estimation when covariates are functional
This paper extends the linearized maximum rank correlation (LMRC) estimation proposed by Shen et al. (2023) to the setting where the covariate is a function. However, this extension is nontrivial due to the difficulty of inverting the covariance operator, which may raise the ill-posed inverse problem, for which we integrate the functional principal component analysis to the LMRC procedure. The proposed estimator is robust to outliers in response and computationally efficient. We establish the rate of convergence of the proposed estimator, which is minimax optimal under certain smoothness assumptions. Furthermore, we extend the proposed estimation procedure to handle discretely observed functional covariates, including both sparse and dense sampling designs, and establish the corresponding rate of convergence. Simulation studies demonstrate that the proposed estimators outperform the other existing methods for some examples. Finally, we apply our method to a real data to illustrate its usefulness.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.