{"title":"Estimation of multiple networks with common structures in heterogeneous subgroups","authors":"Xing Qin , Jianhua Hu , Shuangge Ma , Mengyun Wu","doi":"10.1016/j.jmva.2024.105298","DOIUrl":null,"url":null,"abstract":"<div><p>Network estimation has been a critical component of high-dimensional data analysis and can provide an understanding of the underlying complex dependence structures. Among the existing studies, Gaussian graphical models have been highly popular. However, they still have limitations due to the homogeneous distribution assumption and the fact that they are only applicable to small-scale data. For example, cancers have various levels of unknown heterogeneity, and biological networks, which include thousands of molecular components, often differ across subgroups while also sharing some commonalities. In this article, we propose a new joint estimation approach for multiple networks with unknown sample heterogeneity, by decomposing the Gaussian graphical model (GGM) into a collection of sparse regression problems. A reparameterization technique and a composite minimax concave penalty are introduced to effectively accommodate the specific and common information across the networks of multiple subgroups, making the proposed estimator significantly advancing from the existing heterogeneity network analysis based on the regularized likelihood of GGM directly and enjoying scale-invariant, tuning-insensitive, and optimization convexity properties. The proposed analysis can be effectively realized using parallel computing. The estimation and selection consistency properties are rigorously established. The proposed approach allows the theoretical studies to focus on independent network estimation only and has the significant advantage of being both theoretically and computationally applicable to large-scale data. Extensive numerical experiments with simulated data and the TCGA breast cancer data demonstrate the prominent performance of the proposed approach in both subgroup and network identifications.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000058","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Network estimation has been a critical component of high-dimensional data analysis and can provide an understanding of the underlying complex dependence structures. Among the existing studies, Gaussian graphical models have been highly popular. However, they still have limitations due to the homogeneous distribution assumption and the fact that they are only applicable to small-scale data. For example, cancers have various levels of unknown heterogeneity, and biological networks, which include thousands of molecular components, often differ across subgroups while also sharing some commonalities. In this article, we propose a new joint estimation approach for multiple networks with unknown sample heterogeneity, by decomposing the Gaussian graphical model (GGM) into a collection of sparse regression problems. A reparameterization technique and a composite minimax concave penalty are introduced to effectively accommodate the specific and common information across the networks of multiple subgroups, making the proposed estimator significantly advancing from the existing heterogeneity network analysis based on the regularized likelihood of GGM directly and enjoying scale-invariant, tuning-insensitive, and optimization convexity properties. The proposed analysis can be effectively realized using parallel computing. The estimation and selection consistency properties are rigorously established. The proposed approach allows the theoretical studies to focus on independent network estimation only and has the significant advantage of being both theoretically and computationally applicable to large-scale data. Extensive numerical experiments with simulated data and the TCGA breast cancer data demonstrate the prominent performance of the proposed approach in both subgroup and network identifications.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.