De-Li Shi, Raphaëlle Grifone, Xiangmin Zhang, Hongyan Li
{"title":"Rbm24-mediated post-transcriptional regulation of skeletal and cardiac muscle development, function and regeneration.","authors":"De-Li Shi, Raphaëlle Grifone, Xiangmin Zhang, Hongyan Li","doi":"10.1007/s10974-024-09685-5","DOIUrl":"10.1007/s10974-024-09685-5","url":null,"abstract":"<p><p>RNA-binding proteins are critically involved in the post-transcriptional control of gene expression during embryonic development and in adult life, contributing to regulating cell differentiation and maintaining tissue homeostasis. Compared to the relatively well documented functions of transcription factors, the regulatory roles of RNA-binding proteins in muscle development and function remain largely elusive. However, deficiency of many RNA-binding proteins has been associated with muscular defects, neuromuscular disorders and heart diseases, such as myotonic dystrophy, amyotrophic lateral sclerosis, and cardiomyopathy. Rbm24 is highly conserved among vertebrates and is one of the best characterized RNA-binding proteins with crucial implication in the myogenic and cardiomyogenic programs. It presents the distinctive particularity of displaying highly restricted expression in both skeletal and cardiac muscles, with changes in subcellular localization during the process of differentiation. Functional analyses using different vertebrate models have clearly demonstrated its requirement for skeletal muscle differentiation and regeneration as well as for myocardium organization and cardiac function, by regulating the expression of both common and distinct target genes in these tissues. The challenge remains to decipher the dynamic feature of post-transcriptional circuits regulated by Rbm24 during skeletal myogenesis, cardiomyogenesis, and muscle repair. This review discusses current understanding of its function in striated muscles and its possible implication in human disease, with the aim of identifying research gaps for future investigation.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":" ","pages":"53-65"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142755182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unraveling the bidirectional relationship between muscle inflammation and satellite cells activity: influencing factors and insights.","authors":"Esmail Karami, Behzad Bazgir, Hossein Shirvani, Mohammad Taghi Mohammadi, Mansoor Khaledi","doi":"10.1007/s10974-024-09683-7","DOIUrl":"10.1007/s10974-024-09683-7","url":null,"abstract":"<p><p>Inflammation stands as a vital and innate function of the immune system, essential for maintaining physiological homeostasis. Its role in skeletal muscle regeneration is pivotal, with the activation of satellite cells (SCs) driving the repair and generation of new myofibers. However, the relationship between inflammation and SCs is intricate, influenced by various factors. Muscle injury and repair prompt significant infiltration of immune cells, particularly macrophages, into the muscle tissue. The interplay of cytokines and chemokines from diverse cell types, including immune cells, fibroadipogenic progenitors, and SCs, further shapes the inflammation-SCs dynamic. While some studies suggest heightened inflammation associates with reduced SC activity and increased fibro- or adipogenesis, others indicate an inflammatory stimulus benefits SC function. Yet, the existing literature struggles to delineate clearly between the stimulatory and inhibitory effects of inflammation on SCs and muscle regeneration. This paper comprehensively reviews studies exploring the impact of pharmacological agents, dietary interventions, genetic factors, and exercise regimes on the interplay between inflammation and SC activity.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":" ","pages":"35-51"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuang Li, Jin Xu, Wenjia Zhang, Yongze Liu, Huili Tong, Bingchen Liu
{"title":"The influences of ARHGEF9 on myoblasts migration and differentiation.","authors":"Shuang Li, Jin Xu, Wenjia Zhang, Yongze Liu, Huili Tong, Bingchen Liu","doi":"10.1007/s10974-025-09692-0","DOIUrl":"https://doi.org/10.1007/s10974-025-09692-0","url":null,"abstract":"<p><p>Rho guanine nucleotide exchange factor 9 (ARHGEF9), as a protein that assists small GTPases, is widely present in various tissues. It has been reported to play an important role mainly in neurological diseases and gliomas. However, there have been no reports on its impact on skeletal muscle regeneration after injury. This study first demonstrated a significant increase in ARHGEF9 protein expression during the regeneration of skeletal muscle post-injury in mice. Secondly, during the differentiation of mouse C2C12 myoblasts, ARHGEF9 significantly increased and co-localized with actin filaments. Inhibition of ARHGEF9 significantly downregulated the migration rate and actin filaments polymerization of mouse C2C12 myoblasts, and significantly reduced the expression of proteins related to cell migration. Finally, inhibition of ARHGEF9 significantly reduced the differentiation ability of mouse C2C12 myoblasts. In summary, ARHGEF9 impacting on myoblasts migration and differentiation suggests that targeting ARHGEF9 could be beneficial for promoting skeletal muscle regeneration and repair.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143483175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plasticity in leukocyte migration during haematopoiesis and inflammation.","authors":"C Villella, M Ciccioli, I M Anton, Y Calle","doi":"10.1007/s10974-025-09691-1","DOIUrl":"https://doi.org/10.1007/s10974-025-09691-1","url":null,"abstract":"<p><p>Under normal physiological conditions, leukocytes and other tissue resident immune cells have been shown to migrate using the mesenchymal (integrin/adhesion dependent) and/or ameboid (integrin/adhesion independent) modes of migration. The objective of this manuscript is to provide a comprehensive literature review that illustrates how leukocytes display high levels of plasticity shifting between ameboid to mesenchymal modes of migration during haematopoiesis and the inflammatory response. This plasticity is shaped by the reciprocal regulation between the pattern of gene expression associated with their haematopoietic lineage or the leukocyte activation status, and the response to the physicochemical and topological characteristics of the surrounding tissue. The use of some common elements from the F-actin polymerising and actomyosin machinery in both modes of migration may facilitate the high capacity of leukocytes to alternate between the two migration modes while navigating a highly heterogenous landscape of physicochemical cues in their anatomical journey. We discuss this paradigm using detailed examples of specific leukocyte populations such as dendritic cells, macrophages and lymphocytes. We propose that cell adhesions involved in leukocyte migration represent signalling hubs where differentiation and physicochemical cues converge. These molecular complexes then generate signalling outputs that coordinate leukocyte expansion, differentiation, and optimal patterns of cell migration during haematopoiesis and leukocyte recruitment to inflammation sites.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143441196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Felix Osten, Alea K Bodenschatz, Karina Ivaskevica, Simon Kröhn, Birgit Piep, Tim Holler, Jana Teske, Judith Montag, Bogdan Iorga, Natalie Weber, Robert Zweigerdt, Theresia Kraft, Joachim D Meissner
{"title":"Differential impact of substrates on myosin heavy and light chain expression in human stem cell-derived cardiomyocytes at single-cell level.","authors":"Felix Osten, Alea K Bodenschatz, Karina Ivaskevica, Simon Kröhn, Birgit Piep, Tim Holler, Jana Teske, Judith Montag, Bogdan Iorga, Natalie Weber, Robert Zweigerdt, Theresia Kraft, Joachim D Meissner","doi":"10.1007/s10974-025-09690-2","DOIUrl":"10.1007/s10974-025-09690-2","url":null,"abstract":"<p><p>To fully exploit the potential of human pluripotent stem cell-derived cardiomyocytes, ideally they should acquire a mature, adult ventricular-like phenotype. Predominant expression of the β-isoform of myosin heavy chain (β-MyHC) and the ventricular isoform of myosin regulatory light chain 2 (MLC2v) is a marker of human adult cardiac ventricle. Yet predominant co-expression of these isoforms is rarely reported by current culture protocols. Here, we assessed the impact of different substrates on β-MyHC and MLC2v expression in single human embryonic stem cell-derived CMs (hESC-CMs). As substrates, surface materials with differing stiffness as defined by Young's modulus were combined with either laminin, a single-component coating, or Matrigel, a multi-component coating including growth factors. Semi-quantitative single-cell immunofluorescence analysis demonstrated that surfaces with supraphysiological stiffness in combination with laminin are sufficient for promotion of predominant β-MyHC expression, but not for predominant MLC2v expression in hESC-CMs. Accordingly, mechanical stimuli likely promote expression of β-MyHC in these cultures. Culture on matrices with a lower stiffness than glass in combination with growth factor-containing Matrigel led to only moderate increases in MLC2v expression, possibly more dependent on growth factors, suggesting different regulation of expression. Integrin-related downstream signal transducers, integrin-linked and cardiac troponin I-interacting kinase, as well as modulation of intracellular Ca<sup>2+</sup>-concentration and epigenetic signaling did not affect MyHC/MLC2 isoform expression. The data indicate that expression of adult ventricular markers β-MyHC and MLC2v depends on different stimuli like substrate stiffness and growth factors. To conclude, multiple stimuli appear to be necessary to promote an adult ventricular phenotype.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143414459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fluorescence lifetime imaging microscopy of endogenous fluorophores in health and disease.","authors":"Barbara Elsnicova","doi":"10.1007/s10974-025-09689-9","DOIUrl":"https://doi.org/10.1007/s10974-025-09689-9","url":null,"abstract":"<p><p>Fluorescence Lifetime Imaging Microscopy (FLIM) of endogenous fluorophores has recently emerged as a powerful, marker-free, and non-invasive tool for investigating cellular metabolism. This cutting-edge imaging technique provides valuable insights into cellular energy states by measuring the fluorescence lifetimes of intrinsically fluorescent redox cofactors. The lifetimes of these cofactors reflect their binding states to enzymes, thus indicating enzymatic activity within specific metabolic pathways. As a result, FLIM can help to reveal the overall redox status of the cell and, to some extent, shifts between oxidative phosphorylation and glycolysis. The application of FLIM in metabolic research has shown significant progress across a diverse range of pathological contexts, including cancer, diabetes, neurodegenerative disorders, and various forms of cardiopathology.The aim of this mini-review is to introduce the methodology of NAD(P)H and FAD/FMN FLIM, outline its underlying principles, and demonstrate its ability to reveal changes in cellular metabolism. Additionally, this mini-review highlights FLIM's potential for understanding cellular redox states, detecting metabolic shifts in various disease models, and contributing to the development of therapeutic strategies.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143408728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katarzyna Chwalenia, Matthew J A Wood, Thomas C Roberts
{"title":"Progress and prospects in antisense oligonucleotide-mediated exon skipping therapies for Duchenne muscular dystrophy.","authors":"Katarzyna Chwalenia, Matthew J A Wood, Thomas C Roberts","doi":"10.1007/s10974-024-09688-2","DOIUrl":"10.1007/s10974-024-09688-2","url":null,"abstract":"<p><p>Recent years have seen enormous progress in the field of advanced therapeutics for the progressive muscle wasting disease Duchenne muscular dystrophy (DMD). In particular, four antisense oligonucleotide (ASO) therapies targeting various DMD-causing mutations have achieved FDA approval, marking major milestones in the treatment of this disease. These compounds are designed to induce alternative splicing events that restore the translation reading frame of the dystrophin gene, leading to the generation of internally-deleted, but mostly functional, pseudodystrophin proteins with the potential to compensate for the genetic loss of dystrophin. However, the efficacy of these compounds is very limited, with delivery remaining a key obstacle to effective therapy. There is therefore an urgent need for improved ASO technologies with better efficacy, and with applicability to a wider range of patient mutations. Here we discuss recent developments in ASO therapies for DMD, and future prospects with a focus on ASO chemical modification and bioconjugation strategies.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617802/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143065773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Louise Richardson, Ruth Hughes, Colin A Johnson, Stuart Egginton, Michelle Peckham
{"title":"The role of MEGF10 in myoblast fusion and hypertrophic response to overload of skeletal muscle.","authors":"Louise Richardson, Ruth Hughes, Colin A Johnson, Stuart Egginton, Michelle Peckham","doi":"10.1007/s10974-024-09686-4","DOIUrl":"https://doi.org/10.1007/s10974-024-09686-4","url":null,"abstract":"<p><p>Biallelic mutations in multiple EGF domain protein 10 (MEGF10) gene cause EMARDD (early myopathy, areflexia, respiratory distress and dysphagia) in humans, a severe recessive myopathy, associated with reduced numbers of PAX7 positive satellite cells. To better understand the role of MEGF10 in satellite cells, we overexpressed human MEGF10 in mouse H-2k<sup>b</sup>-tsA58 myoblasts and found that it inhibited fusion. Addition of purified extracellular domains of human MEGF10, with (ECD) or without (EGF) the N-terminal EMI domain to H-2k<sup>b</sup>-tsA58 myoblasts, showed that the ECD was more effective at reducing myoblast adhesion and fusion by day 7 of differentiation, yet promoted adhesion of myoblasts to non-adhesive surfaces, highlighting the importance of the EMI domain in these behaviours. We additionally tested the role of Megf10 in vivo using transgenic mice with reduced (Megf10<sup>+/-</sup>) or no (Megf10<sup>-/-</sup>) Megf10. We found that the extensor digitorum longus muscle had fewer anti-Pax7 stained cell nuclei and was less able to undergo hypertrophy in response to muscle overload concomitant with a lower level of satellite cell activation. Taken together, our data suggest that MEGF10 may promote satellite cell adhesion and survival and prevent premature fusion helping to explain its role in EMARDD.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143006792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The effects of exercise and mitochondrial transplantation alone or in combination against Doxorubicin-induced skeletal muscle atrophy.","authors":"Gokhan Burcin Kubat, Oner Ulger, Ozbeyen Atalay, Tugba Fatsa, Ibrahim Turkel, Berkay Ozerklig, Ertugrul Celik, Emrah Ozenc, Gulcin Simsek, Meltem Tuncer","doi":"10.1007/s10974-024-09676-6","DOIUrl":"10.1007/s10974-024-09676-6","url":null,"abstract":"<p><p>Doxorubicin (DOX) is a chemotherapy drug used to treat various types of cancer, but it is associated with significant side effects such as skeletal muscle atrophy. Exercise has been found to prevent skeletal muscle atrophy through the modulation of mitochondrial pathways. Mitochondrial transplantation (MT) may mitigate toxicity, neurological disorders, kidney and liver injury, and skeletal muscle atrophy. The objective of this study was to evaluate the effects of MT, exercise, and MT with exercise on DOX-induced skeletal muscle atrophy. Male Sprague Dawley rats were randomly assigned to the following groups: control, DOX, MT with DOX, exercise with DOX, and exercise with MT and DOX. A 10-day treadmill running exercise and MT (6.5 µg/100 µL) to tibialis anterior (TA) muscle were administered prior to a single injection of DOX (20 mg/kg). Our data showed that exercise and MT with exercise led to an increase in cross-sectional area of the TA muscle. Exercise, MT and MT with exercise reduced inflammation and maintained mitochondrial enzyme activity. Additionally, exercise and MT have been shown to regulate mitochondrial fusion/fission. Our findings revealed that exercise and MT with exercise prevented oxidative damage. Furthermore, MT and MT with exercise decreased apoptosis and MT with exercise triggered mitochondrial biogenesis. These findings demonstrate the importance of exercise in the prevention of skeletal muscle atrophy and emphasize the significant benefits of MT with exercise. To the best of our knowledge, this is the first study to demonstrate the therapeutic effects of MT with exercise in DOX-induced skeletal muscle atrophy.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":" ","pages":"233-251"},"PeriodicalIF":1.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141186417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"TAM-associated CASQ1 mutants diminish intracellular Ca<sup>2+</sup> content and interfere with regulation of SOCE.","authors":"Alessandra Gamberucci, Claudio Nanni, Enrico Pierantozzi, Matteo Serano, Feliciano Protasi, Daniela Rossi, Vincenzo Sorrentino","doi":"10.1007/s10974-024-09681-9","DOIUrl":"10.1007/s10974-024-09681-9","url":null,"abstract":"<p><p>Tubular aggregate myopathy (TAM) is a rare myopathy characterized by muscle weakness and myalgia. Muscle fibers from TAM patients show characteristic accumulation of membrane tubules that contain proteins from the sarcoplasmic reticulum (SR). Gain-of-function mutations in STIM1 and ORAI1, the key proteins participating in the Store-Operated Ca<sup>2+</sup> Entry (SOCE) mechanism, were identified in patients with TAM. Recently, the CASQ1 gene was also found to be mutated in patients with TAM. CASQ1 is the main Ca<sup>2+</sup> buffer of the SR and a negative regulator of SOCE. Previous characterization of CASQ1 mutants in non-muscle cells revealed that they display altered Ca<sup>2+</sup>dependent polymerization, reduced Ca<sup>2+</sup>storage capacity and alteration in SOCE inhibition. We thus aimed to assess how mutations in CASQ1 affect calcium regulation in skeletal muscles, where CASQ1 is naturally expressed. We thus expressed CASQ1 mutants in muscle fibers from Casq1 knockout mice, which provide a valuable model for studying the Ca<sup>2+</sup> storage capacity of TAM-associated mutants. Moreover, since Casq1 knockout mice display a constitutively active SOCE, the effect of CASQ1 mutants on SOCE inhibition can be also properly examined in fibers from these mice. Analysis of intracellular Ca<sup>2+</sup> confirmed that CASQ1 mutants have impaired ability to store Ca<sup>2+</sup>and lose their ability to inhibit skeletal muscle SOCE; this is in agreement with the evidence that alterations in Ca<sup>2+</sup>entry due to mutations in either STIM1, ORAI1 or CASQ1 represents a hallmark of TAM.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":" ","pages":"275-284"},"PeriodicalIF":1.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554935/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141913007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}