Journal of Muscle Research and Cell Motility最新文献

筛选
英文 中文
Fluorescence lifetime imaging microscopy of endogenous fluorophores in health and disease. 健康和疾病中内源性荧光团的荧光寿命成像显微镜。
IF 1.8 3区 生物学
Journal of Muscle Research and Cell Motility Pub Date : 2025-06-01 Epub Date: 2025-02-13 DOI: 10.1007/s10974-025-09689-9
Barbara Elsnicova
{"title":"Fluorescence lifetime imaging microscopy of endogenous fluorophores in health and disease.","authors":"Barbara Elsnicova","doi":"10.1007/s10974-025-09689-9","DOIUrl":"10.1007/s10974-025-09689-9","url":null,"abstract":"<p><p>Fluorescence Lifetime Imaging Microscopy (FLIM) of endogenous fluorophores has recently emerged as a powerful, marker-free, and non-invasive tool for investigating cellular metabolism. This cutting-edge imaging technique provides valuable insights into cellular energy states by measuring the fluorescence lifetimes of intrinsically fluorescent redox cofactors. The lifetimes of these cofactors reflect their binding states to enzymes, thus indicating enzymatic activity within specific metabolic pathways. As a result, FLIM can help to reveal the overall redox status of the cell and, to some extent, shifts between oxidative phosphorylation and glycolysis. The application of FLIM in metabolic research has shown significant progress across a diverse range of pathological contexts, including cancer, diabetes, neurodegenerative disorders, and various forms of cardiopathology.The aim of this mini-review is to introduce the methodology of NAD(P)H and FAD/FMN FLIM, outline its underlying principles, and demonstrate its ability to reveal changes in cellular metabolism. Additionally, this mini-review highlights FLIM's potential for understanding cellular redox states, detecting metabolic shifts in various disease models, and contributing to the development of therapeutic strategies.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":" ","pages":"67-82"},"PeriodicalIF":1.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143408728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into human muscle biology from human primary skeletal muscle cell culture. 从人类原代骨骼肌细胞培养中了解人类肌肉生物学。
IF 1.8 3区 生物学
Journal of Muscle Research and Cell Motility Pub Date : 2025-05-10 DOI: 10.1007/s10974-025-09696-w
Thomas Francis, Casper Soendenbroe, Norman R Lazarus, Abigail L Mackey, Stephen D R Harridge
{"title":"Insights into human muscle biology from human primary skeletal muscle cell culture.","authors":"Thomas Francis, Casper Soendenbroe, Norman R Lazarus, Abigail L Mackey, Stephen D R Harridge","doi":"10.1007/s10974-025-09696-w","DOIUrl":"https://doi.org/10.1007/s10974-025-09696-w","url":null,"abstract":"<p><p>This review arises from the symposium held in honour of Prof Jenny Morgan at UCL in 2024 and the authors would like to acknowledge the outstanding contribution that Prof Morgan has made to the field of translational muscle cell biology. Prof Morgan published a review article in 2010 entitled: Are human and mice satellite cells really the same? In which the authors highlighted differences between species which are still pertinent to skeletal muscle cell culture studies today. To our knowledge there are no comprehensive reviews which outline the considerable work that has been undertaken using human primary skeletal muscle origin cells as the main model system. This review highlights the multitude of muscle biology that has been investigated using human primary cells, as well as discussing the advantages and disadvantages over other cell models. We also discuss future directions for primary cell culture models utilising the latest technologies in cell type specificity and culture systems.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143968029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
miR-2400 promotes proliferation of bovine skeletal muscle-derived satellite cells by regulating MAGED1 genes expression. miR-2400通过调节MAGED1基因表达促进牛骨骼肌来源卫星细胞的增殖。
IF 1.8 3区 生物学
Journal of Muscle Research and Cell Motility Pub Date : 2025-05-08 DOI: 10.1007/s10974-025-09695-x
Li Yang, Hai-Jing Luo, Zhi-An Gong, Wen-Tian Zhang, Jing-Xuan Cui, Xue-Peng Fu, Wei-Wei Zhang
{"title":"miR-2400 promotes proliferation of bovine skeletal muscle-derived satellite cells by regulating MAGED1 genes expression.","authors":"Li Yang, Hai-Jing Luo, Zhi-An Gong, Wen-Tian Zhang, Jing-Xuan Cui, Xue-Peng Fu, Wei-Wei Zhang","doi":"10.1007/s10974-025-09695-x","DOIUrl":"https://doi.org/10.1007/s10974-025-09695-x","url":null,"abstract":"<p><p>microRNAs play a crucial role in the intricate process of muscle satellite cells proliferation and differentiation. Previous studies have demonstrated that miR-2400 can regulate bovine skeletal muscle satellite cell (MuSCs) proliferation, yet the underlying mechanism remains incompletely elucidated. In this study, we employed bioinformatics prediction and dual luciferase reporter assays to establish that miR-2400 directly targets the 3' untranslated regions (UTRs) of melanoma antigen family D1 (MAGED1) mRNA, thereby suppressing its expression. To ascertain whether miR-2400 affects the proliferation of MuSCs through MAGED1, we constructed the MAGED1 interference vector using RNA interference technology (RNAi) and assessed changes in MuSCs proliferation subsequent to MAGED1 interference. The experimental data indicate that the cell viability and the rate of EdU-positive cells of MuSCs were increased after interference with MAGED1. The proportion of S-phase cells and the expression level of cell cycle-associated proteins CCND2 and CCNB1 increased. These findings align with miR-2400's role in promoting cell proliferation and suggest that miR-2400 exerts its effects by directly targeting MAGED1.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144025714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNA-seq and ChIP-seq unveils thyroid hormone receptor α deficiency affects skeletal muscle myoblast proliferation and differentiation via Col6a1 during aging. RNA-seq和ChIP-seq揭示衰老过程中甲状腺激素受体α缺乏通过Col6a1影响骨骼肌成肌细胞的增殖和分化。
IF 1.8 3区 生物学
Journal of Muscle Research and Cell Motility Pub Date : 2025-05-03 DOI: 10.1007/s10974-025-09694-y
Runqing Shi, Gong Chen, Yusheng Zhang, Jiru Zhang, Lu Yan, Yu Duan
{"title":"RNA-seq and ChIP-seq unveils thyroid hormone receptor α deficiency affects skeletal muscle myoblast proliferation and differentiation via Col6a1 during aging.","authors":"Runqing Shi, Gong Chen, Yusheng Zhang, Jiru Zhang, Lu Yan, Yu Duan","doi":"10.1007/s10974-025-09694-y","DOIUrl":"https://doi.org/10.1007/s10974-025-09694-y","url":null,"abstract":"<p><p>Primary sarcopenia, an age-related syndrome, is a serious threat to the health and longevity of the elderly. Our prior studies indicated that thyroid hormone (TH) activity within muscle tissue undergoes significant age-associated alterations, mainly evidenced by a reduction in thyroid hormone receptor α (TRα) expression over time. TRα regulates the transcription of downstream target genes to exert its biological effects. Although TH is essential for skeletal muscle growth and development, the specific regulatory mechanism and broader role of TH binding its receptors in skeletal muscle aging remain unclear. We used ChIP-seq and RNA-seq to explore the aging changes of TRα target genes in gastrocnemius muscle of natural aging mouse model. ChIP-seq analysis revealed that TRα target genes are involved in nutrient synthesis, energy production, hormone secretion, and ECM-related pathways, suggesting a potential role of TRα in muscle growth, metabolism and component regulation. Further integration of RNA-seq showed that a greater number of down-regulated TRα target genes are associated with skeletal muscle aging. Through GSEA analysis and RT-qPCR screening, Col6a1 was identified as a key target gene. Col6a1 encodes collagen VI which is an important component of the ECM, ECM disorders and abnormal expression of Col6a1 can affect cell proliferation and differentiation. We confirmed that knockdown of Col6a1 inhibited the proliferation and differentiation of C2C12 cells. ChIP-qPCR and TRα silencing in C2C12 cells showed that TRα positively regulates Col6a1 transcription, and TRα deficiency inhibits the proliferation and differentiation of myoblasts, which is probably associated with Col6a1. These findings provide new insights into the molecular mechanisms underlying skeletal muscle aging and the regulatory roles of TH-TRα interactions.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143970442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enduring effects of acute prenatal ischemia in rat soleus muscle, and protective role of erythropoietin. 产前急性缺血对大鼠比目鱼肌的持久影响以及促红细胞生成素的保护作用
IF 1.8 3区 生物学
Journal of Muscle Research and Cell Motility Pub Date : 2025-03-01 Epub Date: 2024-11-16 DOI: 10.1007/s10974-024-09684-6
Tiphaine Sancerni, Valérie Montel, Julie Dereumetz, Laetitia Cochon, Jacques-Olivier Coq, Bruno Bastide, Marie-Hélène Canu
{"title":"Enduring effects of acute prenatal ischemia in rat soleus muscle, and protective role of erythropoietin.","authors":"Tiphaine Sancerni, Valérie Montel, Julie Dereumetz, Laetitia Cochon, Jacques-Olivier Coq, Bruno Bastide, Marie-Hélène Canu","doi":"10.1007/s10974-024-09684-6","DOIUrl":"10.1007/s10974-024-09684-6","url":null,"abstract":"<p><p>Motor disorders are considered to originate mainly from brain lesions. Placental dysfunction or maternal exposure to a persistently hypoxic environment is a major cause of further motor disorders such as cerebral palsy. Our main goal was to determine the long-term effects of mild intrauterine acute ischemic stress on rat soleus myofibres and whether erythropoietin treatment could prevent these changes. Rat embryos were subjected to ischemic stress at embryonic day E17. They then received an intraperitoneal erythropoietin injection at postnatal days 1-5. Soleus muscles were collected at postnatal day 28. Prenatal ischemic stress durably affected muscle structure, as indicated by the greater fiber cross-sectional area (+ 18%) and the greater number of mature vessels (i.e. vessels with mature endothelial cells) per myofibres (+ 43%), and muscle biochemistry, as shown by changes in signaling pathways involved in protein synthesis/degradation balance (-81% for 4EBP1; -58% for AKT) and Hif1α expression levels (+ 95%). Erythropoietin injection in ischemic pups had a weak protective effect: it increased muscle mass (+ 25% with respect to ischemic pups) and partially prevented the increase in muscle degradation pathways and mature vascularization, whereas it exacerbated the decrease in synthesis pathways. Hence, erythropoietin treatment after acute ischemic stress contributes to muscle adaptation to ischemic conditions.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":" ","pages":"23-34"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numb family proteins play roles in Desmin and Vimentin localization at the Z-disc. 麻木家族蛋白在z盘的Desmin和Vimentin定位中起作用。
IF 1.8 3区 生物学
Journal of Muscle Research and Cell Motility Pub Date : 2025-03-01 Epub Date: 2024-12-15 DOI: 10.1007/s10974-024-09687-3
Baolei Wang, Shujuan Li, Yan Yang, Jinfeng Luo
{"title":"Numb family proteins play roles in Desmin and Vimentin localization at the Z-disc.","authors":"Baolei Wang, Shujuan Li, Yan Yang, Jinfeng Luo","doi":"10.1007/s10974-024-09687-3","DOIUrl":"10.1007/s10974-024-09687-3","url":null,"abstract":"<p><p>Desmin and Vimentin are major intermediate filaments at the Z-disc and play significant roles in sarcomere architecture and signaling transduction. Abnormal expression of sarcomeric Desmin and Vimentin (SDV) results in severe dysfunctions of striated muscles. In this study, it was found that paired Numb family proteins (NFPs), including Numb and its homolog Numblike, determined the range for the recruitment of SDV to the primitive Z-disc. Notably, NFPs were identified as SDV associated proteins and bound to the head, rod, and tail domains of SDV in a splicing-variant-dependent manner. Last, the construction and consolidation of the Z-disc was completed through the gradual adjustment of the position of SDV by clockwise/anticlockwise rotation of paired NFPs to 90° in the same direction. Conditional knockout of NFPs altered the arrangement and accumulated the expression level of SDV. This study further enriches the functions of NFPs in sarcomere assembly and maintenance through cooperation with SDV.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":" ","pages":"9-22"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Muscle spindle receptors and their impact on Parkinson´s disease and Cerebral Palsy subjects. 肌肉主轴受体及其对帕金森病和脑瘫患者的影响。
IF 1.8 3区 生物学
Journal of Muscle Research and Cell Motility Pub Date : 2025-03-01 Epub Date: 2024-11-14 DOI: 10.1007/s10974-024-09682-8
Else Marie Bartels, Adrian Harrison
{"title":"Muscle spindle receptors and their impact on Parkinson´s disease and Cerebral Palsy subjects.","authors":"Else Marie Bartels, Adrian Harrison","doi":"10.1007/s10974-024-09682-8","DOIUrl":"10.1007/s10974-024-09682-8","url":null,"abstract":"<p><p>In some neurological conditions, like Parkinson's disease (PD) and Cerebral Palsy (CP), as well as with ageing, muscle spindles have been mentioned as participating in the pathological response of observed muscles. The aim of this review has therefore been to examine what is known about muscle spindle receptors, their function and how they are involved in regulating precise muscle movement in relation to these two conditions. Data from acoustic myography (AMG) studies with healthy controls (HC), CP and PD subjects have been re-examined with a view to identifying possible effects of changes in muscle movement which could be related to muscle spindle receptor function. Studies of muscle spindles have shown that during shortening and lengthening contractions the fusimotor system is activated differently with different discharge frequencies and sensitivities. With increasing age comes a loss of precise proprioception, something that coincides with a change in the AMG E-score towards lower values, indicating a reduced level of coordination and efficiency of muscle use. With PD and CP there is likewise a documented decrease in proprioception, also showing lower E-values than age-matched HC subjects. We conclude that the decrease in proprioception observed in these subjects must be partly due to a change in the muscle spindle / C-centre feedback system.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":" ","pages":"1-8"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11865145/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rbm24-mediated post-transcriptional regulation of skeletal and cardiac muscle development, function and regeneration. rbm24介导的骨骼肌和心肌发育、功能和再生的转录后调控。
IF 1.8 3区 生物学
Journal of Muscle Research and Cell Motility Pub Date : 2025-03-01 Epub Date: 2024-11-30 DOI: 10.1007/s10974-024-09685-5
De-Li Shi, Raphaëlle Grifone, Xiangmin Zhang, Hongyan Li
{"title":"Rbm24-mediated post-transcriptional regulation of skeletal and cardiac muscle development, function and regeneration.","authors":"De-Li Shi, Raphaëlle Grifone, Xiangmin Zhang, Hongyan Li","doi":"10.1007/s10974-024-09685-5","DOIUrl":"10.1007/s10974-024-09685-5","url":null,"abstract":"<p><p>RNA-binding proteins are critically involved in the post-transcriptional control of gene expression during embryonic development and in adult life, contributing to regulating cell differentiation and maintaining tissue homeostasis. Compared to the relatively well documented functions of transcription factors, the regulatory roles of RNA-binding proteins in muscle development and function remain largely elusive. However, deficiency of many RNA-binding proteins has been associated with muscular defects, neuromuscular disorders and heart diseases, such as myotonic dystrophy, amyotrophic lateral sclerosis, and cardiomyopathy. Rbm24 is highly conserved among vertebrates and is one of the best characterized RNA-binding proteins with crucial implication in the myogenic and cardiomyogenic programs. It presents the distinctive particularity of displaying highly restricted expression in both skeletal and cardiac muscles, with changes in subcellular localization during the process of differentiation. Functional analyses using different vertebrate models have clearly demonstrated its requirement for skeletal muscle differentiation and regeneration as well as for myocardium organization and cardiac function, by regulating the expression of both common and distinct target genes in these tissues. The challenge remains to decipher the dynamic feature of post-transcriptional circuits regulated by Rbm24 during skeletal myogenesis, cardiomyogenesis, and muscle repair. This review discusses current understanding of its function in striated muscles and its possible implication in human disease, with the aim of identifying research gaps for future investigation.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":" ","pages":"53-65"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142755182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the bidirectional relationship between muscle inflammation and satellite cells activity: influencing factors and insights. 揭示肌肉炎症与卫星细胞活性之间的双向关系:影响因素与启示。
IF 1.8 3区 生物学
Journal of Muscle Research and Cell Motility Pub Date : 2025-03-01 Epub Date: 2024-11-07 DOI: 10.1007/s10974-024-09683-7
Esmail Karami, Behzad Bazgir, Hossein Shirvani, Mohammad Taghi Mohammadi, Mansoor Khaledi
{"title":"Unraveling the bidirectional relationship between muscle inflammation and satellite cells activity: influencing factors and insights.","authors":"Esmail Karami, Behzad Bazgir, Hossein Shirvani, Mohammad Taghi Mohammadi, Mansoor Khaledi","doi":"10.1007/s10974-024-09683-7","DOIUrl":"10.1007/s10974-024-09683-7","url":null,"abstract":"<p><p>Inflammation stands as a vital and innate function of the immune system, essential for maintaining physiological homeostasis. Its role in skeletal muscle regeneration is pivotal, with the activation of satellite cells (SCs) driving the repair and generation of new myofibers. However, the relationship between inflammation and SCs is intricate, influenced by various factors. Muscle injury and repair prompt significant infiltration of immune cells, particularly macrophages, into the muscle tissue. The interplay of cytokines and chemokines from diverse cell types, including immune cells, fibroadipogenic progenitors, and SCs, further shapes the inflammation-SCs dynamic. While some studies suggest heightened inflammation associates with reduced SC activity and increased fibro- or adipogenesis, others indicate an inflammatory stimulus benefits SC function. Yet, the existing literature struggles to delineate clearly between the stimulatory and inhibitory effects of inflammation on SCs and muscle regeneration. This paper comprehensively reviews studies exploring the impact of pharmacological agents, dietary interventions, genetic factors, and exercise regimes on the interplay between inflammation and SC activity.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":" ","pages":"35-51"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influences of ARHGEF9 on myoblasts migration and differentiation. ARHGEF9对成肌细胞迁移和分化的影响。
IF 1.8 3区 生物学
Journal of Muscle Research and Cell Motility Pub Date : 2025-02-24 DOI: 10.1007/s10974-025-09692-0
Shuang Li, Jin Xu, Wenjia Zhang, Yongze Liu, Huili Tong, Bingchen Liu
{"title":"The influences of ARHGEF9 on myoblasts migration and differentiation.","authors":"Shuang Li, Jin Xu, Wenjia Zhang, Yongze Liu, Huili Tong, Bingchen Liu","doi":"10.1007/s10974-025-09692-0","DOIUrl":"https://doi.org/10.1007/s10974-025-09692-0","url":null,"abstract":"<p><p>Rho guanine nucleotide exchange factor 9 (ARHGEF9), as a protein that assists small GTPases, is widely present in various tissues. It has been reported to play an important role mainly in neurological diseases and gliomas. However, there have been no reports on its impact on skeletal muscle regeneration after injury. This study first demonstrated a significant increase in ARHGEF9 protein expression during the regeneration of skeletal muscle post-injury in mice. Secondly, during the differentiation of mouse C2C12 myoblasts, ARHGEF9 significantly increased and co-localized with actin filaments. Inhibition of ARHGEF9 significantly downregulated the migration rate and actin filaments polymerization of mouse C2C12 myoblasts, and significantly reduced the expression of proteins related to cell migration. Finally, inhibition of ARHGEF9 significantly reduced the differentiation ability of mouse C2C12 myoblasts. In summary, ARHGEF9 impacting on myoblasts migration and differentiation suggests that targeting ARHGEF9 could be beneficial for promoting skeletal muscle regeneration and repair.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143483175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信