RNA-seq和ChIP-seq揭示衰老过程中甲状腺激素受体α缺乏通过Col6a1影响骨骼肌成肌细胞的增殖和分化。

IF 1.8 3区 生物学 Q4 CELL BIOLOGY
Runqing Shi, Gong Chen, Yusheng Zhang, Jiru Zhang, Lu Yan, Yu Duan
{"title":"RNA-seq和ChIP-seq揭示衰老过程中甲状腺激素受体α缺乏通过Col6a1影响骨骼肌成肌细胞的增殖和分化。","authors":"Runqing Shi, Gong Chen, Yusheng Zhang, Jiru Zhang, Lu Yan, Yu Duan","doi":"10.1007/s10974-025-09694-y","DOIUrl":null,"url":null,"abstract":"<p><p>Primary sarcopenia, an age-related syndrome, is a serious threat to the health and longevity of the elderly. Our prior studies indicated that thyroid hormone (TH) activity within muscle tissue undergoes significant age-associated alterations, mainly evidenced by a reduction in thyroid hormone receptor α (TRα) expression over time. TRα regulates the transcription of downstream target genes to exert its biological effects. Although TH is essential for skeletal muscle growth and development, the specific regulatory mechanism and broader role of TH binding its receptors in skeletal muscle aging remain unclear. We used ChIP-seq and RNA-seq to explore the aging changes of TRα target genes in gastrocnemius muscle of natural aging mouse model. ChIP-seq analysis revealed that TRα target genes are involved in nutrient synthesis, energy production, hormone secretion, and ECM-related pathways, suggesting a potential role of TRα in muscle growth, metabolism and component regulation. Further integration of RNA-seq showed that a greater number of down-regulated TRα target genes are associated with skeletal muscle aging. Through GSEA analysis and RT-qPCR screening, Col6a1 was identified as a key target gene. Col6a1 encodes collagen VI which is an important component of the ECM, ECM disorders and abnormal expression of Col6a1 can affect cell proliferation and differentiation. We confirmed that knockdown of Col6a1 inhibited the proliferation and differentiation of C2C12 cells. ChIP-qPCR and TRα silencing in C2C12 cells showed that TRα positively regulates Col6a1 transcription, and TRα deficiency inhibits the proliferation and differentiation of myoblasts, which is probably associated with Col6a1. These findings provide new insights into the molecular mechanisms underlying skeletal muscle aging and the regulatory roles of TH-TRα interactions.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RNA-seq and ChIP-seq unveils thyroid hormone receptor α deficiency affects skeletal muscle myoblast proliferation and differentiation via Col6a1 during aging.\",\"authors\":\"Runqing Shi, Gong Chen, Yusheng Zhang, Jiru Zhang, Lu Yan, Yu Duan\",\"doi\":\"10.1007/s10974-025-09694-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Primary sarcopenia, an age-related syndrome, is a serious threat to the health and longevity of the elderly. Our prior studies indicated that thyroid hormone (TH) activity within muscle tissue undergoes significant age-associated alterations, mainly evidenced by a reduction in thyroid hormone receptor α (TRα) expression over time. TRα regulates the transcription of downstream target genes to exert its biological effects. Although TH is essential for skeletal muscle growth and development, the specific regulatory mechanism and broader role of TH binding its receptors in skeletal muscle aging remain unclear. We used ChIP-seq and RNA-seq to explore the aging changes of TRα target genes in gastrocnemius muscle of natural aging mouse model. ChIP-seq analysis revealed that TRα target genes are involved in nutrient synthesis, energy production, hormone secretion, and ECM-related pathways, suggesting a potential role of TRα in muscle growth, metabolism and component regulation. Further integration of RNA-seq showed that a greater number of down-regulated TRα target genes are associated with skeletal muscle aging. Through GSEA analysis and RT-qPCR screening, Col6a1 was identified as a key target gene. Col6a1 encodes collagen VI which is an important component of the ECM, ECM disorders and abnormal expression of Col6a1 can affect cell proliferation and differentiation. We confirmed that knockdown of Col6a1 inhibited the proliferation and differentiation of C2C12 cells. ChIP-qPCR and TRα silencing in C2C12 cells showed that TRα positively regulates Col6a1 transcription, and TRα deficiency inhibits the proliferation and differentiation of myoblasts, which is probably associated with Col6a1. These findings provide new insights into the molecular mechanisms underlying skeletal muscle aging and the regulatory roles of TH-TRα interactions.</p>\",\"PeriodicalId\":16422,\"journal\":{\"name\":\"Journal of Muscle Research and Cell Motility\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Muscle Research and Cell Motility\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10974-025-09694-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Muscle Research and Cell Motility","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10974-025-09694-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

原发性肌肉减少症是一种与年龄有关的综合症,严重威胁老年人的健康和寿命。我们之前的研究表明,肌肉组织中的甲状腺激素(TH)活性经历了显著的年龄相关改变,主要表现为甲状腺激素受体α (TRα)表达随时间的减少。TRα通过调控下游靶基因的转录来发挥其生物学作用。虽然TH对骨骼肌的生长发育至关重要,但TH结合其受体在骨骼肌衰老中的具体调控机制和更广泛的作用尚不清楚。我们采用ChIP-seq和RNA-seq技术探讨自然衰老小鼠腓肠肌中TRα靶基因的衰老变化。ChIP-seq分析显示,TRα靶基因参与营养合成、能量产生、激素分泌和ecm相关通路,提示TRα在肌肉生长、代谢和成分调节中可能发挥作用。RNA-seq的进一步整合表明,大量下调的TRα靶基因与骨骼肌衰老有关。通过GSEA分析和RT-qPCR筛选,鉴定出Col6a1为关键靶基因。Col6a1编码的胶原VI是ECM的重要组成部分,ECM紊乱和Col6a1的异常表达会影响细胞的增殖和分化。我们证实Col6a1的敲低抑制了C2C12细胞的增殖和分化。在C2C12细胞中,ChIP-qPCR和TRα沉默显示,TRα正调控Col6a1转录,TRα缺乏抑制成肌细胞的增殖和分化,这可能与Col6a1有关。这些发现为骨骼肌衰老的分子机制和TH-TRα相互作用的调控作用提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RNA-seq and ChIP-seq unveils thyroid hormone receptor α deficiency affects skeletal muscle myoblast proliferation and differentiation via Col6a1 during aging.

Primary sarcopenia, an age-related syndrome, is a serious threat to the health and longevity of the elderly. Our prior studies indicated that thyroid hormone (TH) activity within muscle tissue undergoes significant age-associated alterations, mainly evidenced by a reduction in thyroid hormone receptor α (TRα) expression over time. TRα regulates the transcription of downstream target genes to exert its biological effects. Although TH is essential for skeletal muscle growth and development, the specific regulatory mechanism and broader role of TH binding its receptors in skeletal muscle aging remain unclear. We used ChIP-seq and RNA-seq to explore the aging changes of TRα target genes in gastrocnemius muscle of natural aging mouse model. ChIP-seq analysis revealed that TRα target genes are involved in nutrient synthesis, energy production, hormone secretion, and ECM-related pathways, suggesting a potential role of TRα in muscle growth, metabolism and component regulation. Further integration of RNA-seq showed that a greater number of down-regulated TRα target genes are associated with skeletal muscle aging. Through GSEA analysis and RT-qPCR screening, Col6a1 was identified as a key target gene. Col6a1 encodes collagen VI which is an important component of the ECM, ECM disorders and abnormal expression of Col6a1 can affect cell proliferation and differentiation. We confirmed that knockdown of Col6a1 inhibited the proliferation and differentiation of C2C12 cells. ChIP-qPCR and TRα silencing in C2C12 cells showed that TRα positively regulates Col6a1 transcription, and TRα deficiency inhibits the proliferation and differentiation of myoblasts, which is probably associated with Col6a1. These findings provide new insights into the molecular mechanisms underlying skeletal muscle aging and the regulatory roles of TH-TRα interactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: The Journal of Muscle Research and Cell Motility has as its main aim the publication of original research which bears on either the excitation and contraction of muscle, the analysis of any one of the processes involved therein, the processes underlying contractility and motility of animal and plant cells, the toxicology and pharmacology related to contractility, or the formation, dynamics and turnover of contractile structures in muscle and non-muscle cells. Studies describing the impact of pathogenic mutations in genes encoding components of contractile structures in humans or animals are welcome, provided they offer mechanistic insight into the disease process or the underlying gene function. The policy of the Journal is to encourage any form of novel practical study whatever its specialist interest, as long as it falls within this broad field. Theoretical essays are welcome provided that they are concise and suggest practical ways in which they may be tested. Manuscripts reporting new mutations in known disease genes without validation and mechanistic insight will not be considered. It is the policy of the journal that cells lines, hybridomas and DNA clones should be made available by the developers to any qualified investigator. Submission of a manuscript for publication constitutes an agreement of the authors to abide by this principle.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信