Differential impact of substrates on myosin heavy and light chain expression in human stem cell-derived cardiomyocytes at single-cell level.

IF 1.8 3区 生物学 Q4 CELL BIOLOGY
Felix Osten, Alea K Bodenschatz, Karina Ivaskevica, Simon Kröhn, Birgit Piep, Tim Holler, Jana Teske, Judith Montag, Bogdan Iorga, Natalie Weber, Robert Zweigerdt, Theresia Kraft, Joachim D Meissner
{"title":"Differential impact of substrates on myosin heavy and light chain expression in human stem cell-derived cardiomyocytes at single-cell level.","authors":"Felix Osten, Alea K Bodenschatz, Karina Ivaskevica, Simon Kröhn, Birgit Piep, Tim Holler, Jana Teske, Judith Montag, Bogdan Iorga, Natalie Weber, Robert Zweigerdt, Theresia Kraft, Joachim D Meissner","doi":"10.1007/s10974-025-09690-2","DOIUrl":null,"url":null,"abstract":"<p><p>To fully exploit the potential of human pluripotent stem cell-derived cardiomyocytes, ideally they should acquire a mature, adult ventricular-like phenotype. Predominant expression of the β-isoform of myosin heavy chain (β-MyHC) and the ventricular isoform of myosin regulatory light chain 2 (MLC2v) is a marker of human adult cardiac ventricle. Yet predominant co-expression of these isoforms is rarely reported by current culture protocols. Here, we assessed the impact of different substrates on β-MyHC and MLC2v expression in single human embryonic stem cell-derived CMs (hESC-CMs). As substrates, surface materials with differing stiffness as defined by Young's modulus were combined with either laminin, a single-component coating, or Matrigel, a multi-component coating including growth factors. Semi-quantitative single-cell immunofluorescence analysis demonstrated that surfaces with supraphysiological stiffness in combination with laminin are sufficient for promotion of predominant β-MyHC expression, but not for predominant MLC2v expression in hESC-CMs. Accordingly, mechanical stimuli likely promote expression of β-MyHC in these cultures. Culture on matrices with a lower stiffness than glass in combination with growth factor-containing Matrigel led to only moderate increases in MLC2v expression, possibly more dependent on growth factors, suggesting different regulation of expression. Integrin-related downstream signal transducers, integrin-linked and cardiac troponin I-interacting kinase, as well as modulation of intracellular Ca<sup>2+</sup>-concentration and epigenetic signaling did not affect MyHC/MLC2 isoform expression. The data indicate that expression of adult ventricular markers β-MyHC and MLC2v depends on different stimuli like substrate stiffness and growth factors. To conclude, multiple stimuli appear to be necessary to promote an adult ventricular phenotype.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Muscle Research and Cell Motility","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10974-025-09690-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To fully exploit the potential of human pluripotent stem cell-derived cardiomyocytes, ideally they should acquire a mature, adult ventricular-like phenotype. Predominant expression of the β-isoform of myosin heavy chain (β-MyHC) and the ventricular isoform of myosin regulatory light chain 2 (MLC2v) is a marker of human adult cardiac ventricle. Yet predominant co-expression of these isoforms is rarely reported by current culture protocols. Here, we assessed the impact of different substrates on β-MyHC and MLC2v expression in single human embryonic stem cell-derived CMs (hESC-CMs). As substrates, surface materials with differing stiffness as defined by Young's modulus were combined with either laminin, a single-component coating, or Matrigel, a multi-component coating including growth factors. Semi-quantitative single-cell immunofluorescence analysis demonstrated that surfaces with supraphysiological stiffness in combination with laminin are sufficient for promotion of predominant β-MyHC expression, but not for predominant MLC2v expression in hESC-CMs. Accordingly, mechanical stimuli likely promote expression of β-MyHC in these cultures. Culture on matrices with a lower stiffness than glass in combination with growth factor-containing Matrigel led to only moderate increases in MLC2v expression, possibly more dependent on growth factors, suggesting different regulation of expression. Integrin-related downstream signal transducers, integrin-linked and cardiac troponin I-interacting kinase, as well as modulation of intracellular Ca2+-concentration and epigenetic signaling did not affect MyHC/MLC2 isoform expression. The data indicate that expression of adult ventricular markers β-MyHC and MLC2v depends on different stimuli like substrate stiffness and growth factors. To conclude, multiple stimuli appear to be necessary to promote an adult ventricular phenotype.

底物对单细胞水平人干细胞源性心肌细胞中肌球蛋白重链和轻链表达的差异影响。
为了充分利用人类多能干细胞衍生的心肌细胞的潜力,理想情况下,它们应该获得成熟的成人心室样表型。肌球蛋白重链β-异构体(β-MyHC)和肌球蛋白调节轻链2 (MLC2v)心室异构体的显性表达是成人心室的标志。然而,目前的培养方案很少报道这些同种异构体的主要共表达。在这里,我们评估了不同底物对单个人胚胎干细胞来源的CMs (hESC-CMs)中β-MyHC和MLC2v表达的影响。作为衬底,根据杨氏模量定义的不同刚度的表面材料与层粘连蛋白(一种单组分涂层)或Matrigel(一种包含生长因子的多组分涂层)结合在一起。半定量单细胞免疫荧光分析表明,具有超生理硬度的表面与层粘连蛋白结合足以促进hESC-CMs中β-MyHC的显性表达,但不能促进MLC2v的显性表达。因此,机械刺激可能促进这些培养中β-MyHC的表达。在硬度低于玻璃的基质上与含有生长因子的基质联合培养,MLC2v的表达仅适度增加,可能更依赖于生长因子,表明其表达调控不同。整合素相关的下游信号转导、整合素连接的和心肌肌钙蛋白i相互作用的激酶,以及细胞内Ca2+浓度的调节和表观遗传信号传导不影响MyHC/MLC2亚型的表达。数据表明,成人心室标志物β-MyHC和MLC2v的表达取决于不同的刺激,如底物刚度和生长因子。综上所述,多种刺激似乎是促进成人心室表型的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: The Journal of Muscle Research and Cell Motility has as its main aim the publication of original research which bears on either the excitation and contraction of muscle, the analysis of any one of the processes involved therein, the processes underlying contractility and motility of animal and plant cells, the toxicology and pharmacology related to contractility, or the formation, dynamics and turnover of contractile structures in muscle and non-muscle cells. Studies describing the impact of pathogenic mutations in genes encoding components of contractile structures in humans or animals are welcome, provided they offer mechanistic insight into the disease process or the underlying gene function. The policy of the Journal is to encourage any form of novel practical study whatever its specialist interest, as long as it falls within this broad field. Theoretical essays are welcome provided that they are concise and suggest practical ways in which they may be tested. Manuscripts reporting new mutations in known disease genes without validation and mechanistic insight will not be considered. It is the policy of the journal that cells lines, hybridomas and DNA clones should be made available by the developers to any qualified investigator. Submission of a manuscript for publication constitutes an agreement of the authors to abide by this principle.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信