Journal of Molecular Microbiology and Biotechnology最新文献

筛选
英文 中文
Contents 内容
IF 1.2
Journal of Molecular Microbiology and Biotechnology Pub Date : 2020-07-01 DOI: 10.1159/000510052
{"title":"Contents","authors":"","doi":"10.1159/000510052","DOIUrl":"https://doi.org/10.1159/000510052","url":null,"abstract":"","PeriodicalId":16370,"journal":{"name":"Journal of Molecular Microbiology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000510052","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42601226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front & Back Matter 正面和背面
IF 1.2
Journal of Molecular Microbiology and Biotechnology Pub Date : 2020-07-01 DOI: 10.1159/000510490
{"title":"Front & Back Matter","authors":"","doi":"10.1159/000510490","DOIUrl":"https://doi.org/10.1159/000510490","url":null,"abstract":"","PeriodicalId":16370,"journal":{"name":"Journal of Molecular Microbiology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44697771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Life Cycle of Dictyostelium discoideum Is Accelerated via MAP Kinase Cascade by a Culture Extract Produced by a Synthetic Microbial Consortium 由合成微生物群落产生的培养提取物通过MAP激酶级联加速盘基网柄菌的生命周期
IF 1.2
Journal of Molecular Microbiology and Biotechnology Pub Date : 2019-12-05 DOI: 10.1159/000504442
H. Kuwayama, T. Higashinakagawa
{"title":"The Life Cycle of Dictyostelium discoideum Is Accelerated via MAP Kinase Cascade by a Culture Extract Produced by a Synthetic Microbial Consortium","authors":"H. Kuwayama, T. Higashinakagawa","doi":"10.1159/000504442","DOIUrl":"https://doi.org/10.1159/000504442","url":null,"abstract":"A cellular slime mold, Dictyostelium discoideum, is an amoeboid organism that has a unique life cycle consisting of distinctly separated vegetative and developmental phases. Thus, this organism presents a rare opportunity in which to examine the effects of bioactive substances on separate cellular activities. In this research, we investigated the effect of a culture extract, termed EMXG, produced by a synthetic microbial consortium. EMXG promoted proliferative response of amoeba cells. It further accelerated the developmental phase, leading to the preferred fruiting body formation from fewer cells. Furthermore, EMXG modulated biological rhythm of this organism, that is, interval of oscillation of cAMP level observed in suspension starvation was significantly shortened. Concomitantly, the level of ERKB, a MAP kinase, was found to oscillate in a similar fashion to that of cAMP. Additionally, ErkB-deficient mutant amoeboid cells did not respond to proliferative stimulation by EMXG. These lines of evidence point to a likelihood that MAP kinase cascade is involved and further that ErkB could be the molecular target of EMXG.","PeriodicalId":16370,"journal":{"name":"Journal of Molecular Microbiology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000504442","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48135805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Riboflavin Transporter in Bdellovibrio exovorous JSS 嗜食性弧菌JSS中的核黄素转运体
IF 1.2
Journal of Molecular Microbiology and Biotechnology Pub Date : 2019-09-11 DOI: 10.1159/000501354
I. Rodionova, Fereshteh Heidari Tajabadi, Zhongge Zhang, D. Rodionov, M. Saier Jr.
{"title":"A Riboflavin Transporter in Bdellovibrio exovorous JSS","authors":"I. Rodionova, Fereshteh Heidari Tajabadi, Zhongge Zhang, D. Rodionov, M. Saier Jr.","doi":"10.1159/000501354","DOIUrl":"https://doi.org/10.1159/000501354","url":null,"abstract":"The ImpX transporters of the drug/metabolite transporter superfamily were first proposed to transport riboflavin (RF; vitamin B2) based on findings of a cis-regulatory RNA element responding to flavin mononucleotide (an FMN riboswitch). Bdellovibrio exovorous JSS has a homolog belonging to this superfamily. It has 10 TMSs and shows 30% identity to the previously characterized ImpX transporter from Fusobacterium nucleatum. However, the ImpX homolog is not regulated by an FMN-riboswitch. In order to test the putative function of the ImpX homolog from B. exovorous (BexImpX), we cloned and heterologously expressed its gene. We used functional complementation, growth inhibition experiments, direct uptake experiments and inhibition studies, suggesting a high degree of specificity for RF uptake. The EC50 for growth with RF was estimated to be in the range 0.5–1 µM, estimated from the half-maximal RF concentration supporting the growth of a RF auxotrophic Escherichia coli strain, but the Khalf for RF uptake was 20 µM. Transport experiments suggested that the energy source is the proton motive force but that NaCl stimulates uptake. Thus, members of the ImpX family members are capable of RF uptake, not only in RF prototrophic species such as F. nucleatum, but also in the B2 auxotrophic species, B. exovorous.","PeriodicalId":16370,"journal":{"name":"Journal of Molecular Microbiology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2019-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000501354","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47209485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Contents 内容
IF 1.2
Journal of Molecular Microbiology and Biotechnology Pub Date : 2019-07-01 DOI: 10.1159/000501813
{"title":"Contents","authors":"","doi":"10.1159/000501813","DOIUrl":"https://doi.org/10.1159/000501813","url":null,"abstract":"","PeriodicalId":16370,"journal":{"name":"Journal of Molecular Microbiology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000501813","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46112873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front & Back Matter 正面和背面事项
IF 1.2
Journal of Molecular Microbiology and Biotechnology Pub Date : 2019-07-01 DOI: 10.1159/000502191
{"title":"Front & Back Matter","authors":"","doi":"10.1159/000502191","DOIUrl":"https://doi.org/10.1159/000502191","url":null,"abstract":"","PeriodicalId":16370,"journal":{"name":"Journal of Molecular Microbiology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41271890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front & Back Matter 正面和背面事项
IF 1.2
Journal of Molecular Microbiology and Biotechnology Pub Date : 2019-03-01 DOI: 10.1159/000499847
W. Wiersinga, G. Kahaly, V. Blanchette, L. Brandão, V. Breakey, S. Revel-Vilk
{"title":"Front & Back Matter","authors":"W. Wiersinga, G. Kahaly, V. Blanchette, L. Brandão, V. Breakey, S. Revel-Vilk","doi":"10.1159/000499847","DOIUrl":"https://doi.org/10.1159/000499847","url":null,"abstract":"","PeriodicalId":16370,"journal":{"name":"Journal of Molecular Microbiology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45860691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Studies of the Listeria monocytogenes Cellobiose Transport Components and Their Impact on Virulence Gene Repression. 单核增生李斯特菌纤维二糖转运组分及其对毒力基因抑制作用的研究。
IF 1.2
Journal of Molecular Microbiology and Biotechnology Pub Date : 2019-01-01 Epub Date: 2019-07-03 DOI: 10.1159/000500090
Thanh Nguyen Cao, Philippe Joyet, Francine Moussan Désirée Aké, Eliane Milohanic, Josef Deutscher
{"title":"Studies of the Listeria monocytogenes Cellobiose Transport Components and Their Impact on Virulence Gene Repression.","authors":"Thanh Nguyen Cao,&nbsp;Philippe Joyet,&nbsp;Francine Moussan Désirée Aké,&nbsp;Eliane Milohanic,&nbsp;Josef Deutscher","doi":"10.1159/000500090","DOIUrl":"https://doi.org/10.1159/000500090","url":null,"abstract":"<p><strong>Background: </strong>Many bacteria transport cellobiose via a phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). In Listeria monocytogenes, two pairs of soluble PTS components (EIIACel1/EIIBCel1 and EIIACel2/EIIBCel2) and the permease EIICCel1 were suggested to contribute to cellobiose uptake. Interestingly, utilization of several carbohydrates, including cellobiose, strongly represses virulence gene expression by inhibiting PrfA, the virulence gene activator.</p><p><strong>Results: </strong>The LevR-like transcription regulator CelR activates expression of the cellobiose-induced PTS operons celB1-celC1-celA1, celB2-celA2, and the EIIC-encoding monocistronic celC2. Phosphorylation by P∼His-HPr at His550 activates CelR, whereas phosphorylation by P∼EIIBCel1 or P∼EIIBCel2 at His823 inhibits it. Replacement of His823 with Ala or deletion of both celA or celB genes caused constitutive CelR regulon expression. Mutants lacking EIICCel1, CelR or both EIIACel exhibitedslow cellobiose consumption. Deletion of celC1 or celR prevented virulence gene repression by the disaccharide, but not by glucose and fructose. Surprisingly, deletion of both celA genes caused virulence gene repression even during growth on non-repressing carbohydrates. No cellobiose-related phenotype was found for the celC2 mutant.</p><p><strong>Conclusion: </strong>The two EIIA/BCel pairs are similarly efficient as phosphoryl donors in EIICCel1-catalyzed cellobiose transport and CelR regulation. The permanent virulence gene repression in the celA double mutant further supports a role of PTSCel components in PrfA regulation.</p>","PeriodicalId":16370,"journal":{"name":"Journal of Molecular Microbiology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000500090","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37127758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Study of the Enzymatic Capacity of Kluyveromyces marxianus for the Synthesis of Esters. 马氏克鲁维菌合成酯酶能力的研究。
IF 1.2
Journal of Molecular Microbiology and Biotechnology Pub Date : 2019-01-01 Epub Date: 2020-04-23 DOI: 10.1159/000507551
Francisco Javier Reyes-Sánchez, Jesús Bernardo Páez-Lerma, Juan Antonio Rojas-Contreras, Javier López-Miranda, Nicolás Óscar Soto-Cruz, Manuel Reinhart-Kirchmayr
{"title":"Study of the Enzymatic Capacity of Kluyveromyces marxianus for the Synthesis of Esters.","authors":"Francisco Javier Reyes-Sánchez,&nbsp;Jesús Bernardo Páez-Lerma,&nbsp;Juan Antonio Rojas-Contreras,&nbsp;Javier López-Miranda,&nbsp;Nicolás Óscar Soto-Cruz,&nbsp;Manuel Reinhart-Kirchmayr","doi":"10.1159/000507551","DOIUrl":"https://doi.org/10.1159/000507551","url":null,"abstract":"<p><p>Recently, biotechnological opportunities have been found in non-Saccharomyces yeasts because they possess metabolic characteristics that lead to the production of compounds of interest. It has been observed that Kluyveromyces marxianus has a great potential in the production of esters, which are aromatic compounds of industrial importance. The genetic bases that govern the synthesis of esters include a large group of enzymes, among which the most important are alcohol acetyl transferases (AATases) and esterases (AEATases), and it is known that some are present in K. marxianus, because it has genetic characteristics like S. cerevisiae. It also has a physiology suitable for biotechnological use since it is the eukaryotic microorganism with the fastest growth rate and has a wide range of thermotolerance with respect to other yeasts. In this work, the enzymatic background of K. marxianus involved in the synthesis of esters is analyzed, based on the sequences reported in the NCBI database.</p>","PeriodicalId":16370,"journal":{"name":"Journal of Molecular Microbiology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000507551","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37864349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Front & Back Matter 正面和背面事项
IF 1.2
Journal of Molecular Microbiology and Biotechnology Pub Date : 2019-01-01 DOI: 10.1159/000496485
W. Wiersinga, G. Kahaly, V. Blanchette, L. Brandão, V. Breakey, S. Revel-Vilk
{"title":"Front & Back Matter","authors":"W. Wiersinga, G. Kahaly, V. Blanchette, L. Brandão, V. Breakey, S. Revel-Vilk","doi":"10.1159/000496485","DOIUrl":"https://doi.org/10.1159/000496485","url":null,"abstract":"","PeriodicalId":16370,"journal":{"name":"Journal of Molecular Microbiology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43702222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信