Journal of Molecular Evolution最新文献

筛选
英文 中文
Expansion and Functional Diversification of Long-Wavelength-Sensitive Opsin in Anabantoid Fishes. 无颌鱼类中长波长敏感光蛋白的扩展和功能多样化
IF 2.1 3区 生物学
Journal of Molecular Evolution Pub Date : 2024-08-01 Epub Date: 2024-06-11 DOI: 10.1007/s00239-024-10181-0
Jan Gerwin, Julián Torres-Dowdall, Thomas F Brown, Axel Meyer
{"title":"Expansion and Functional Diversification of Long-Wavelength-Sensitive Opsin in Anabantoid Fishes.","authors":"Jan Gerwin, Julián Torres-Dowdall, Thomas F Brown, Axel Meyer","doi":"10.1007/s00239-024-10181-0","DOIUrl":"10.1007/s00239-024-10181-0","url":null,"abstract":"<p><p>Gene duplication is one of the most important sources of novel genotypic diversity and the subsequent evolution of phenotypic diversity. Determining the evolutionary history and functional changes of duplicated genes is crucial for a comprehensive understanding of adaptive evolution. The evolutionary history of visual opsin genes is very dynamic, with repeated duplication events followed by sub- or neofunctionalization. While duplication of the green-sensitive opsins rh2 is common in teleost fish, fewer cases of multiple duplication events of the red-sensitive opsin lws are known. In this study, we investigate the visual opsin gene repertoire of the anabantoid fishes, focusing on the five lws opsin genes found in the genus Betta. We determine the evolutionary history of the lws opsin gene by taking advantage of whole-genome sequences of nine anabantoid species, including the newly assembled genome of Betta imbellis. Our results show that at least two independent duplications of lws occurred in the Betta lineage. The analysis of amino acid sequences of the lws paralogs of Betta revealed high levels of diversification in four of the seven transmembrane regions of the lws protein. Amino acid substitutions at two key-tuning sites are predicted to lead to differentiation of absorption maxima (λ<sub>max</sub>) between the paralogs within Betta. Finally, eye transcriptomics of B. splendens at different developmental stages revealed expression shifts between paralogs for all cone opsin classes. The lws genes are expressed according to their relative position in the lws opsin cluster throughout ontogeny. We conclude that temporal collinearity of lws expression might have facilitated subfunctionalization of lws in Betta and teleost opsins in general.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":"432-448"},"PeriodicalIF":2.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291592/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141300795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Selection and Migration in the Evolution of (Auto)Immunity Genes. 选择和迁移在(自身)免疫基因进化中的作用》(The Role of Selection and Migration in the Evolution of (Auto)Immunity Genes.
IF 2.1 3区 生物学
Journal of Molecular Evolution Pub Date : 2024-08-01 Epub Date: 2024-06-26 DOI: 10.1007/s00239-024-10182-z
Konstantinos Voskarides
{"title":"The Role of Selection and Migration in the Evolution of (Auto)Immunity Genes.","authors":"Konstantinos Voskarides","doi":"10.1007/s00239-024-10182-z","DOIUrl":"10.1007/s00239-024-10182-z","url":null,"abstract":"<p><p>The genetic architecture of multiple sclerosis is complicated. Additionally, the disease incidence varies per population or per geographical region. A recent study gives convincing explanations about the north-south incidence gradient of multiple sclerosis in Europe, by analyzing ancient and modern human genomes. Interestingly, the evidence shows that multiple sclerosis associated immunogenetic variants underwent positive selection in Asian and European populations. Lifestyle and pathogen infections probably shaped the overall multiple sclerosis risk. These results complete the findings of previous studies that showed that a high percentage of the autoimmunity associated genetic variants are under selection pressure.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":"359-362"},"PeriodicalIF":2.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291582/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141457462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning from the Codon Table: Convergent Recoding Provides Novel Understanding on the Evolution of A-to-I RNA Editing. 从密码表中学习:趋同重编码为 A 到 I RNA 编辑的进化提供了新的理解。
IF 2.1 3区 生物学
Journal of Molecular Evolution Pub Date : 2024-08-01 Epub Date: 2024-07-16 DOI: 10.1007/s00239-024-10190-z
Ling Ma, Caiqing Zheng, Jiyao Liu, Fan Song, Li Tian, Wanzhi Cai, Hu Li, Yuange Duan
{"title":"Learning from the Codon Table: Convergent Recoding Provides Novel Understanding on the Evolution of A-to-I RNA Editing.","authors":"Ling Ma, Caiqing Zheng, Jiyao Liu, Fan Song, Li Tian, Wanzhi Cai, Hu Li, Yuange Duan","doi":"10.1007/s00239-024-10190-z","DOIUrl":"10.1007/s00239-024-10190-z","url":null,"abstract":"<p><p>Adenosine-to-inosine (A-to-I) RNA editing recodes the genetic information. Apart from diversifying the proteome, another tempting advantage of RNA recoding is to correct deleterious DNA mutation and restore ancestral allele. Solid evidences for beneficial restorative editing are very rare in animals. By searching for \"convergent recoding\" under a phylogenetic context, we proposed this term for judging the potential restorative functions of particular editing site. For the well-known mammalian Gln>Arg (Q>R) recoding site, its ancestral state in vertebrate genomes was the pre-editing Gln, and all 470 available mammalian genomes strictly avoid other three equivalent ways to achieve Arg in protein. The absence of convergent recoding from His>Arg, or synonymous mutations on Gln codons, could be attributed to the strong maintenance on editing motif and structure, but the absence of direct A-to-G mutation is extremely unexpected. With similar ideas, we found cases of convergent recoding in Drosophila genus, reducing the possibility of their restorative function. In summary, we defined an interesting scenario of convergent recoding, the occurrence of which could be used as preliminary judgements for whether a recoding site has a sole restorative role. Our work provides novel insights to the natural selection and evolution of RNA editing.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":"488-504"},"PeriodicalIF":2.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant Kinesin Repertoires Expand with New Domain Architecture and Contract with the Loss of Flagella. 植物驱动蛋白再导体随着新的领域结构而扩展,并随着鞭毛的消失而收缩。
IF 2.1 3区 生物学
Journal of Molecular Evolution Pub Date : 2024-08-01 Epub Date: 2024-06-26 DOI: 10.1007/s00239-024-10178-9
Jessica Lucas, Matt Geisler
{"title":"Plant Kinesin Repertoires Expand with New Domain Architecture and Contract with the Loss of Flagella.","authors":"Jessica Lucas, Matt Geisler","doi":"10.1007/s00239-024-10178-9","DOIUrl":"10.1007/s00239-024-10178-9","url":null,"abstract":"<p><p>Kinesins are eukaryotic microtubule motor proteins subdivided into conserved families with distinct functional roles. While many kinesin families are widespread in eukaryotes, each organismal lineage maintains a unique kinesin repertoire composed of many families with distinct numbers of genes. Previous genomic surveys indicated that land plant kinesin repertoires differ markedly from other eukaryotes. To determine when repertoires diverged during plant evolution, we performed robust phylogenomic analyses of kinesins in 24 representative plants, two algae, two animals, and one yeast. These analyses show that kinesin repertoires expand and contract coincident with major shifts in the biology of algae and land plants. One kinesin family and five subfamilies, each defined by unique domain architectures, emerged in the green algae. Four of those kinesin groups expanded in ancestors of modern land plants, while six other kinesin groups were lost in the ancestors of pollen-bearing plants. Expansions of different kinesin families and subfamilies occurred in moss and angiosperm lineages. Other kinesin families remained stable and did not expand throughout plant evolution. Collectively these data support a radiation of kinesin domain architectures in algae followed by differential positive and negative selection on kinesins families and subfamilies in different lineages of land plants.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":"381-401"},"PeriodicalIF":2.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141457461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomic Gigantism is not Associated with Reduced Selection Efficiency in Neotropical Salamanders. 基因组巨型化与新热带蝾螈选择效率降低无关
IF 2.1 3区 生物学
Journal of Molecular Evolution Pub Date : 2024-08-01 Epub Date: 2024-06-06 DOI: 10.1007/s00239-024-10177-w
Hairo Rios-Carlos, María Guadalupe Segovia-Ramírez, Matthew K Fujita, Sean M Rovito
{"title":"Genomic Gigantism is not Associated with Reduced Selection Efficiency in Neotropical Salamanders.","authors":"Hairo Rios-Carlos, María Guadalupe Segovia-Ramírez, Matthew K Fujita, Sean M Rovito","doi":"10.1007/s00239-024-10177-w","DOIUrl":"10.1007/s00239-024-10177-w","url":null,"abstract":"<p><p>Genome size variation in eukaryotes has myriad effects on organismal biology from the genomic to whole-organism level. Large genome size may be associated with lower selection efficiency because lower effective population sizes allow fixation of deleterious mutations via genetic drift, increasing genome size and decreasing selection efficiency. Because of a hypothesized negative relationship between genome size and recombination rate per base pair, increased genome size could also increase the effect of linked selection in the genome, decreasing the efficiency with which natural selection can fix or remove mutations. We used a transcriptomic dataset of 15 and a subset of six Neotropical salamander species ranging in genome size from 12 to 87 pg to study the relationship between genome size and efficiency of selection. We estimated dN/dS of salamanders with small and large genomes and tested for relaxation of selection in the larger genomes. Contrary to our expectations, we did not find a significant relationship between genome size and selection efficiency or strong evidence for higher dN/dS values in species with larger genomes for either species set. We also found little evidence for relaxation of selection in species with larger genomes. A positive correlation between genome size and range size (a proxy of population size) in this group disagrees with predictions of stronger drift in species with larger genomes. Our results highlight the complex interactions between the many forces shaping genomic variation in organisms with genomic gigantism.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":"371-380"},"PeriodicalIF":2.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291587/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selection Across the Three-Dimensional Structure of Venom Proteins from North American Scolopendromorph Centipedes. 北美蚣类毒液蛋白三维结构的选择。
IF 2.1 3区 生物学
Journal of Molecular Evolution Pub Date : 2024-08-01 Epub Date: 2024-07-18 DOI: 10.1007/s00239-024-10191-y
Schyler A Ellsworth, Rhett M Rautsaw, Micaiah J Ward, Matthew L Holding, Darin R Rokyta
{"title":"Selection Across the Three-Dimensional Structure of Venom Proteins from North American Scolopendromorph Centipedes.","authors":"Schyler A Ellsworth, Rhett M Rautsaw, Micaiah J Ward, Matthew L Holding, Darin R Rokyta","doi":"10.1007/s00239-024-10191-y","DOIUrl":"10.1007/s00239-024-10191-y","url":null,"abstract":"<p><p>Gene duplication followed by nucleotide differentiation is one of the simplest mechanisms to develop new functions for genes. However, the evolutionary processes underlying the divergence of multigene families remain controversial. We used multigene families found within the diversity of toxic proteins in centipede venom to test two hypotheses related to venom evolution: the two-speed mode of venom evolution and the rapid accumulation of variation in exposed residues (RAVER) model. The two-speed mode of venom evolution proposes that different types of selection impact ancient and younger venomous lineages with negative selection being the predominant form in ancient lineages and positive selection being the dominant form in younger lineages. The RAVER hypothesis proposes that, instead of different types of selection acting on different ages of venomous lineages, the different types of selection will selectively contribute to amino acid variation based on whether the residue is exposed to the solvent where it can potentially interact directly with toxin targets. This hypothesis parallels the longstanding understanding of protein evolution that suggests that residues found within the structural or active regions of the protein will be under negative or purifying selection, and residues that do not form part of these areas will be more prone to positive selection. To test these two hypotheses, we compared the venom of 26 centipedes from the order Scolopendromorpha from six currently recognized species from across North America using both transcriptomics and proteomics. We first estimated their phylogenetic relationships and uncovered paraphyly among the genus Scolopendra and evidence for cryptic diversity among currently recognized species. Using our phylogeny, we then characterized the diverse venom components from across the identified clades using a combination of transcriptomics and proteomics. We conducted selection-based analyses in the context of predicted three-dimensional properties of the venom proteins and found support for both hypotheses. Consistent with the two-speed hypothesis, we found a prevalence of negative selection across all proteins. Consistent with the RAVER hypothesis, we found evidence of positive selection on solvent-exposed residues, with structural and less-exposed residues showing stronger signal for negative selection. Through the use of phylogenetics, transcriptomics, proteomics, and selection-based analyses, we were able to describe the evolution of venom from an ancient venomous lineage and support principles of protein evolution that directly relate to multigene family evolution.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":"505-524"},"PeriodicalIF":2.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prebiotic N-(2-Aminoethyl)-Glycine (AEG)-Assisted Synthesis of Proto-RNA? N-(2-Aminoethyl)-Glycine (AEG)辅助原 RNA 的益生元合成?
IF 2.1 3区 生物学
Journal of Molecular Evolution Pub Date : 2024-08-01 Epub Date: 2024-07-25 DOI: 10.1007/s00239-024-10185-w
Lázaro A M Castanedo, Chérif F Matta
{"title":"Prebiotic N-(2-Aminoethyl)-Glycine (AEG)-Assisted Synthesis of Proto-RNA?","authors":"Lázaro A M Castanedo, Chérif F Matta","doi":"10.1007/s00239-024-10185-w","DOIUrl":"10.1007/s00239-024-10185-w","url":null,"abstract":"<p><p>Quantum mechanical calculations are used to explore the thermodynamics of possible prebiotic synthesis of the building blocks of nucleic acids. Different combinations of D-ribofuranose (Ribf) and N-(2-aminoethyl)-glycine (AEG) (trifunctional connectors (TCs)); the nature of the Ribf, its anomeric form, and its ring puckering (conformation); and the nature of the nucleobases (recognition units (RUs)) are considered. The combinatorial explosion of possible nucleosides has been drastically reduced on physicochemical grounds followed by a detailed thermodynamic evaluation of alternative synthetic pathways. The synthesis of nucleosides containing N-(2-aminoethyl)-glycine (AEG) is predicted to be thermodynamically favored suggesting a possible role of AEG as a component of an ancestral proto-RNA that may have preceded today's nucleic acids. A new pathway for the building of free nucleotides (exemplified by 5'-uridine monophosphate (UMP)) and of AEG dipeptides is proposed. This new pathway leads to a spontaneous formation of free UMP assisted by an AEG nucleoside in an aqueous environment. This appears to be a workaround to the \"water problem\" that prohibits the synthesis of nucleotides in water.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":"449-466"},"PeriodicalIF":2.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141759284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Are Most Human-Specific Proteins Encoded by Long Noncoding RNAs? 大多数人类特异性蛋白质都是由长非编码 RNA 编码的吗?
IF 2.1 3区 生物学
Journal of Molecular Evolution Pub Date : 2024-08-01 Epub Date: 2024-06-25 DOI: 10.1007/s00239-024-10174-z
Yves-Henri Sanejouand
{"title":"Are Most Human-Specific Proteins Encoded by Long Noncoding RNAs?","authors":"Yves-Henri Sanejouand","doi":"10.1007/s00239-024-10174-z","DOIUrl":"10.1007/s00239-024-10174-z","url":null,"abstract":"<p><p>By looking for a lack of homologs in a reference database of 27 well-annotated proteomes of primates and 52 well-annotated proteomes of other mammals, 170 putative human-specific proteins were identified. While most of them are deemed uncertain, 2 are known at the protein level and 23 at the transcript level, according to UniProt. Interestingly, 23 of these 25 proteins are found to be encoded or to have close homologs in an open reading frame of a long noncoding human RNA. However, half of them are predicted to be at least 80% globular, with a single structural domain, according to IUPred, and with at least 80% of ordered residues, according to flDPnn. Strikingly, there is a near-complete lack of structural knowledge about these proteins, with no tertiary structure presently available in the Protein Data Bank and a fair prediction for one of them in the AlphaFold Protein Structure Database. Moreover, knowledge about the function of these possibly key proteins remains scarce.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":"363-370"},"PeriodicalIF":2.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141446310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liquorilactobacillus: A Context of the Evolutionary History and Metabolic Adaptation of a Bacterial Genus from Fermentation Liquid Environments. 酒乳杆菌:发酵液环境中细菌属的进化史和代谢适应性背景。
IF 2.1 3区 生物学
Journal of Molecular Evolution Pub Date : 2024-08-01 Epub Date: 2024-07-17 DOI: 10.1007/s00239-024-10189-6
Dayane da Silva Santos, Nara Suzy Aguiar Freitas, Marcos Antonio de Morais, Allyson Andrade Mendonça
{"title":"Liquorilactobacillus: A Context of the Evolutionary History and Metabolic Adaptation of a Bacterial Genus from Fermentation Liquid Environments.","authors":"Dayane da Silva Santos, Nara Suzy Aguiar Freitas, Marcos Antonio de Morais, Allyson Andrade Mendonça","doi":"10.1007/s00239-024-10189-6","DOIUrl":"10.1007/s00239-024-10189-6","url":null,"abstract":"<p><p>In the present work, we carried out a comparative genomic analysis to trace the evolutionary trajectory of the bacterial species that make up the Liquorilactobacillus genus, from the identification of genes and speciation/adaptation mechanisms in their unique characteristics to the identification of the pattern grouping these species. We present phylogenetic relationships between Liquorilactobacillus and related taxa such as Bacillus, basal lactobacilli and Ligilactobacillus, highlighting evolutionary divergences and lifestyle transitions across different taxa. The species of this genus share a core genome of 1023 genes, distributed in all COGs, which made it possible to characterize it as Liquorilactobacillus sensu lato: few amino acid auxotrophy, low genes number for resistance to antibiotics and general and specific cellular reprogramming mechanisms for environmental responses. These species were divided into four clades, with diversity being enhanced mainly by the diversity of genes involved in sugar metabolism. Clade 1 presented lower (< 70%) average amino acid identity with the other clades, with exclusive or absent genes, and greater distance in the genome compared to clades 2, 3 and 4. The data pointed to an ancestor of clades 2, 3 and 4 as being the origin of the genus Ligilactobacillus, while the species of clade 1 being closer to the ancestral Bacillus. All these traits indicated that the species of clade 1 could be soon separated in a distinct genus.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":"467-487"},"PeriodicalIF":2.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141626959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breathing Air and Living Underwater: Molecular Evolution of Genes Related to Antioxidant Response in Cetaceans and Pinnipeds. 呼吸空气和水下生活:鲸目动物和鳍足类动物抗氧化反应相关基因的分子进化。
IF 3.9 3区 生物学
Journal of Molecular Evolution Pub Date : 2024-06-01 Epub Date: 2024-05-12 DOI: 10.1007/s00239-024-10170-3
Giovanna Selleghin-Veiga, Letícia Magpali, Agnello Picorelli, Felipe A Silva, Elisa Ramos, Mariana F Nery
{"title":"Breathing Air and Living Underwater: Molecular Evolution of Genes Related to Antioxidant Response in Cetaceans and Pinnipeds.","authors":"Giovanna Selleghin-Veiga, Letícia Magpali, Agnello Picorelli, Felipe A Silva, Elisa Ramos, Mariana F Nery","doi":"10.1007/s00239-024-10170-3","DOIUrl":"10.1007/s00239-024-10170-3","url":null,"abstract":"<p><p>Cetaceans and pinnipeds are lineages of mammals that have independently returned to the aquatic environment, acquiring varying degrees of dependence on it while sharing adaptations for underwater living. Here, we focused on one critical adaptation from both groups, their ability to withstand the ischemia and reperfusion experienced during apnea diving, which can lead to the production of reactive oxygen species (ROS) and subsequent oxidative damage. Previous studies have shown that cetaceans and pinnipeds possess efficient antioxidant enzymes that protect against ROS. In this study, we investigated the molecular evolution of key antioxidant enzyme genes (CAT, GPX3, GSR, PRDX1, PRDX3, and SOD1) and the ROS-producing gene XDH, in cetaceans and pinnipeds lineages. We used the ratio of non-synonymous (dN) to synonymous (dS) substitutions as a measure to identify signatures of adaptive molecular evolution in these genes within and between the two lineages. Additionally, we performed protein modeling and variant impact analyzes to assess the functional consequences of observed mutations. Our findings revealed distinct selective regimes between aquatic and terrestrial mammals in five of the examined genes, including divergences within cetacean and pinniped lineages, between ancestral and recent lineages and between crowns groups. We identified specific sites under positive selection unique to Cetacea and Pinnipedia, with one site showing evidence of convergent evolution in species known for their long and deep-diving capacities. Notably, many sites under adaptive selection exhibited radical changes in amino acid properties, with some being damaging mutations in human variations, but with no apparent detrimental impacts on aquatic mammals. In conclusion, our study provides insights into the adaptive changes that have occurred in the antioxidant systems of aquatic mammals throughout their evolutionary history. We observed both distinctive features within each group of Cetacea and Pinnipedia and instances of convergence. These findings highlight the dynamic nature of the antioxidant system in response to challenges of the aquatic environment and provide a foundation for further investigations into the molecular mechanisms underlying these adaptations.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":"300-316"},"PeriodicalIF":3.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140908960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信