Journal of Molecular Evolution最新文献

筛选
英文 中文
Mutations Inactivating Biosynthesis of Dispensable Carbohydrate-Antigens Prevented Extinctions in Primate/Human Lineage Evolution.
IF 2.1 3区 生物学
Journal of Molecular Evolution Pub Date : 2025-03-30 DOI: 10.1007/s00239-025-10243-x
Uri Galili
{"title":"Mutations Inactivating Biosynthesis of Dispensable Carbohydrate-Antigens Prevented Extinctions in Primate/Human Lineage Evolution.","authors":"Uri Galili","doi":"10.1007/s00239-025-10243-x","DOIUrl":"https://doi.org/10.1007/s00239-025-10243-x","url":null,"abstract":"<p><p>The human natural anti-carbohydrate antibodies anti-Gal, anti-Neu5Gc, and anti-Forssman are \"living-fossils\" that appeared in ancestral apes, monkeys and hominins millions of years ago. These antibodies appeared at various evolutionary periods in few mutated-offspring that lost the ability to synthesize the corresponding dispensable (i.e., nonessential) carbohydrate-antigens, α-gal epitope, Neu5Gc (N-glycolyl neuraminic acid) and Forssman-antigen, respectively. Production of these antibodies is stimulated by environmental antigens such as those of the human microbiota. Elimination of carbohydrate-antigens in the few mutated-offspring was caused by accidental nonsense or missense mutations that inactivated genes encoding enzymes involved in their biosynthesis, while most individuals in parental-populations continued synthesizing these carbohydrate-antigens. It has been suggested that dispensable carbohydrate-antigens which are absent in some mammalian species were evolutionary eliminated due to selective pressure by lethal viruses using these carbohydrate-antigens as \"docking\" receptors. An alternative selective mechanism which is based on the distribution of anti-Gal, anti-Neu5Gc and anti-Forssman in mammals, is presented in this review and is associated with the protective effects of these natural antibodies. It is suggested that epidemics of lethal enveloped-viruses caused the extinction of parental-populations synthesizing the corresponding carbohydrate-antigens of these antibodies,  independent of the cell adhesion mechanisms of such viruses. However, the few mutated offspring were protected by these natural antibodies which bound to carbohydrate-antigens synthesized on viruses as a result of their replication in individuals of the parental-populations. Recent studies suggest that these antibodies continue to contribute to the immune protection of humans against zoonotic infections by viruses presenting α-gal, Neu5Gc or Forssman antigens.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143753022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Evidence for Multiple Independent Expansions of Fox Gene Families Within Flatworms. Correction to:扁形虫体内福克斯基因家族多次独立扩展的证据
IF 2.1 3区 生物学
Journal of Molecular Evolution Pub Date : 2025-03-28 DOI: 10.1007/s00239-025-10241-z
Ludwik Gąsiorowski
{"title":"Correction to: Evidence for Multiple Independent Expansions of Fox Gene Families Within Flatworms.","authors":"Ludwik Gąsiorowski","doi":"10.1007/s00239-025-10241-z","DOIUrl":"https://doi.org/10.1007/s00239-025-10241-z","url":null,"abstract":"","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143735860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Sequence Divergence in Venom Genes Within and Between Montane Pitviper (Viperidae: Crotalinae: Cerrophidion) Species is Driven by Mutation-Drift Equilibrium.
IF 2.1 3区 生物学
Journal of Molecular Evolution Pub Date : 2025-03-04 DOI: 10.1007/s00239-025-10239-7
Ramses Alejandro Rosales-Garcia, Rhett M Rautsaw, Erich P Hofmann, Christoph I Grünwald, Hector Franz-Chavez, Ivan T Ahumada-Carrillo, Ricardo Ramirez-Chaparro, Miguel Angel de la Torre-Loranca, Jason L Strickland, Andrew J Mason, Matthew L Holding, Miguel Borja, Gamaliel Castaneda-Gaytan, Edward A Myers, Mahmood Sasa, Darin R Rokyta, Christopher L Parkinson
{"title":"Correction: Sequence Divergence in Venom Genes Within and Between Montane Pitviper (Viperidae: Crotalinae: Cerrophidion) Species is Driven by Mutation-Drift Equilibrium.","authors":"Ramses Alejandro Rosales-Garcia, Rhett M Rautsaw, Erich P Hofmann, Christoph I Grünwald, Hector Franz-Chavez, Ivan T Ahumada-Carrillo, Ricardo Ramirez-Chaparro, Miguel Angel de la Torre-Loranca, Jason L Strickland, Andrew J Mason, Matthew L Holding, Miguel Borja, Gamaliel Castaneda-Gaytan, Edward A Myers, Mahmood Sasa, Darin R Rokyta, Christopher L Parkinson","doi":"10.1007/s00239-025-10239-7","DOIUrl":"https://doi.org/10.1007/s00239-025-10239-7","url":null,"abstract":"","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143541822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prebiotic Peptide Synthesis: How Did Longest Peptide Appear?
IF 2.1 3区 生物学
Journal of Molecular Evolution Pub Date : 2025-02-24 DOI: 10.1007/s00239-025-10237-9
Yuling Yang, Zhibiao Wang, Jin Bai, Hai Qiao
{"title":"Prebiotic Peptide Synthesis: How Did Longest Peptide Appear?","authors":"Yuling Yang, Zhibiao Wang, Jin Bai, Hai Qiao","doi":"10.1007/s00239-025-10237-9","DOIUrl":"https://doi.org/10.1007/s00239-025-10237-9","url":null,"abstract":"<p><p>The origin of proteins is a fundamental question in the study of the origin of life. Peptides, as the building blocks of proteins, necessarily preceded the first proteins in prebiotic chemical evolution. Prebiotic peptides may have also played crucial roles in early life's evolution, contributing to self-catalysis, interacting with nucleic acids, and stabilizing primitive cell compartments. Longer and more complicated prebiotic peptides often have greater structural flexibility and functional potential to support the emergence and evolution of early life. Since the Miller-Urey experiment demonstrated that amino acids can be synthesized in a prebiotic manner, the prebiotic synthesis route of peptides has garnered increasing attention from researchers. However, it is difficult for amino acids to condense into peptides in aqueous solutions spontaneously. Over the past few decades, researchers have explored various routes of prebiotic peptide synthesis in the plausible prebiotic Earth environment, such as thermal polymerization, clay mineral catalysis, wet-dry cycles, condensing agents, and lipid-mediated. This paper reviews advancements in prebiotic peptide synthesis research and discusses the conditions that may have facilitated the emergence of longer peptides.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143482087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Ultimate Question for Functional A-to-I mRNA Editing: Why Not a Genomic G?
IF 2.1 3区 生物学
Journal of Molecular Evolution Pub Date : 2025-02-18 DOI: 10.1007/s00239-025-10238-8
Qiuhua Xie, Yuange Duan
{"title":"An Ultimate Question for Functional A-to-I mRNA Editing: Why Not a Genomic G?","authors":"Qiuhua Xie, Yuange Duan","doi":"10.1007/s00239-025-10238-8","DOIUrl":"https://doi.org/10.1007/s00239-025-10238-8","url":null,"abstract":"<p><p>A-to-I mRNA editing resembles A-to-G mutations. Functional mRNA editing, representing only a corner of total editing events, can be inferred from the experimental removal of editing. However, it is intuitive to ask why evolution chose RNA editing rather than directly (and simply) changing the genomic sequence to G? If G is better than A, then drift or constructive neutral evolution (CNE) theory can explain the emergence of such editing, but it is still unclear why the exemplified conserved editing is perfectly maintained without observing any subsequent A-to-G DNA mutations? Virtually every functional and conserved mRNA editing site faces this ultimate question until one justifies that being editable is better than a hardwired genomic allele. While the advantage of editability has been validated in fungi, this ultimate question has not been answered for any functional editing sites in animals. By providing several conceptual arguments and specific examples, we propose that proving the evolutionary adaptiveness of an editing site is far more difficult than revealing its function.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143441165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of an Alphacoronavirus in a Brazilian Bat (Molossus sp.).
IF 2.1 3区 生物学
Journal of Molecular Evolution Pub Date : 2025-02-17 DOI: 10.1007/s00239-025-10236-w
C L Molina, M M Magalhães, A C Rodrigues, S A Taniwaki, S O de Souza Silva, G A König, P E Brandão
{"title":"Detection of an Alphacoronavirus in a Brazilian Bat (Molossus sp.).","authors":"C L Molina, M M Magalhães, A C Rodrigues, S A Taniwaki, S O de Souza Silva, G A König, P E Brandão","doi":"10.1007/s00239-025-10236-w","DOIUrl":"https://doi.org/10.1007/s00239-025-10236-w","url":null,"abstract":"<p><p>Due to the COVID-19 pandemic and the uncertainty about aspects of its origin, in recent years there has been an increased interest in investigating coronaviruses in wild animals. Bats are hosts of the greatest diversity of coronaviruses to date, including the ancestors of viruses that have caused outbreaks in humans. Although in Brazil, information on coronaviruses in bats has expanded, still they remain unrepresentative. To help shed some light on this matter, we collected 175 samples from bats of different species from two Brazilian states. Here, we report the previously unknown presence of an alphacoronavirus in a bat (Molossus sp.) from Ceará. The phylogenetic analysis showed close relationships with alphacoronaviruses from Brazil and Argentina, but it was not possible to determine the subgenus or species of this virus using RNA-dependent RNA-polymerase (RdRp) domain of the nsp12 protein-coding sequence as it was distant from the specimens considered by the International Committee on Taxonomy of Viruses (ICTV). Finally, by performing High-Throughput Sequencing, we were able to find contigs mostly belonging to domains of the replicase of bat coronaviruses related to American bats of the Molossidae and Vespertilionidae families.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143441168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selection Pressure Regulates the Evolution-Structure-Function Paradigm of Monocyte Chemoattractant Protein Family.
IF 2.1 3区 生物学
Journal of Molecular Evolution Pub Date : 2025-02-05 DOI: 10.1007/s00239-025-10235-x
Nupur Nagar, Khushboo Gulati, Krishna Mohan Poluri
{"title":"Selection Pressure Regulates the Evolution-Structure-Function Paradigm of Monocyte Chemoattractant Protein Family.","authors":"Nupur Nagar, Khushboo Gulati, Krishna Mohan Poluri","doi":"10.1007/s00239-025-10235-x","DOIUrl":"https://doi.org/10.1007/s00239-025-10235-x","url":null,"abstract":"<p><p>Monocyte chemoattractant proteins (MCPs) are involved in monocyte trafficking during severe inflammation by modulating the chemokine-glycosaminoglycan-receptor signaling axis. MCPs comprise a family of four chemokines (CCL2, CCL7, CCL8, and CCL13/12) that exhibit differential expression patterns in mammals, functional diversity, and receptor/glycosaminoglycan (GAG) binding promiscuity. In this context, the evolution-structure-function paradigm of MCP chemokines in mammals was established by assessing phylogeny, functional divergence, selection pressure, and coevolution in correlation with structural and surface characteristics. Comprehensive analyses were performed using an array of evolutionary and structural bioinformatic methods including molecular dynamics simulations. Our findings demonstrate that substitutions in receptor/GAG-interacting residues mediate episodic diversification and functional diversity in MCP chemokines. Additionally, a balanced interplay of selection pressures has driven the functional changes observed among MCP paralogs, with positive selection at various receptor/GAG-binding sites contributing to their promiscuous receptor/GAG interactions. Meanwhile, processes like purifying selection and coevolution maintain the classical chemokine structure and preserve the ancestral functions of MCP chemokines. Overall, this study suggests that selection pressure on sites within the N-terminal region [N-loop and 3<sub>10</sub>-helix] and 40S loop of MCP chemokines alters surface properties to fine-tune the molecular interactions and functional characteristics without altering the overall chemokine structure.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Principles of Molecular Evolution: Concepts from Non-equilibrium Thermodynamics for the Multilevel Theory of Learning. 更正:分子进化原理:多层学习理论的非平衡热力学概念。
IF 2.1 3区 生物学
Journal of Molecular Evolution Pub Date : 2025-02-01 DOI: 10.1007/s00239-024-10228-2
Jens Smiatek
{"title":"Correction: Principles of Molecular Evolution: Concepts from Non-equilibrium Thermodynamics for the Multilevel Theory of Learning.","authors":"Jens Smiatek","doi":"10.1007/s00239-024-10228-2","DOIUrl":"10.1007/s00239-024-10228-2","url":null,"abstract":"","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":"181"},"PeriodicalIF":2.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850474/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142931867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
nT4X and nT4M: Novel Time Non-reversible Mixture Amino Acid Substitution Models. nT4X和nT4M:新的时间不可逆混合物氨基酸取代模型。
IF 2.1 3区 生物学
Journal of Molecular Evolution Pub Date : 2025-02-01 Epub Date: 2025-01-20 DOI: 10.1007/s00239-024-10230-8
Nguyen Huy Tinh, Cuong Cao Dang, Le Sy Vinh
{"title":"nT4X and nT4M: Novel Time Non-reversible Mixture Amino Acid Substitution Models.","authors":"Nguyen Huy Tinh, Cuong Cao Dang, Le Sy Vinh","doi":"10.1007/s00239-024-10230-8","DOIUrl":"10.1007/s00239-024-10230-8","url":null,"abstract":"<p><p>One of the most important and difficult challenges in the research of molecular evolution is modeling the process of amino acid substitutions. Although single-matrix models, such as the LG model, are popular, their capability to properly capture the heterogeneity of the substitution process across sites is still questioned. Several mixture models with multiple matrices have been introduced and shown to offer advantages over single-matrix models. Current general mixture models assume the reversibility of the evolutionary process, implying that substitution rates between any two amino acids are equal in both forward and backward directions. This assumption is not based on biological properties but rather on computational simplicity. The well-known hypothesis is that more realistic models can yield more accurate evolutionary inferences; therefore, our aim is to estimate more biologically realistic models. To this end, we relax the assumption of reversibility and introduce two new general non-reversible 4-matrix mixture models, called nT4M and nT4X. Using alignments from HSSP and TreeBASE databases as data, our newly estimated models outperformed all single-matrix models and almost all reversible mixture models. Moreover, the new non-reversible mixture models enable us to infer rooted trees.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":"136-148"},"PeriodicalIF":2.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143006938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evidence for Multiple Independent Expansions of Fox Gene Families Within Flatworms. Fox基因家族在扁虫体内多个独立扩展的证据。
IF 2.1 3区 生物学
Journal of Molecular Evolution Pub Date : 2025-02-01 Epub Date: 2025-01-18 DOI: 10.1007/s00239-024-10226-4
Ludwik Gąsiorowski
{"title":"Evidence for Multiple Independent Expansions of Fox Gene Families Within Flatworms.","authors":"Ludwik Gąsiorowski","doi":"10.1007/s00239-024-10226-4","DOIUrl":"10.1007/s00239-024-10226-4","url":null,"abstract":"<p><p>Expansion and losses of gene families are important drivers of molecular evolution. A recent survey of Fox genes in flatworms revealed that this superfamily of multifunctional transcription factors, present in all animals, underwent extensive losses and expansions during platyhelminth evolution. In this paper, I analyzed Fox gene complement in four additional species of platyhelminths, that represent early-branching lineages in the flatworm phylogeny: catenulids (Stenostomum brevipharyngium and Stenostomum leucops) and macrostomorphs (Macrostomum hystrix and Macrostomum cliftonense). Phylogenetic analysis of Fox genes from this expanded set of species provided evidence for multiple independent expansions of Fox gene families within flatworms. Notably, FoxG, a panbilaterian brain-patterning gene, appears to be the least susceptible to duplication, while FoxJ1, a conserved ciliogenesis factor, has undergone extensive expansion in various flatworm lineages. Analysis of the single-cell atlas of S. brevipharyngium, combined with RNA in situ hybridization, elucidated the tissue-specific expression of the selected Fox genes: FoxG is expressed in the brain, three of the Fox genes (FoxN2/3-2, FoxO4 and FoxP1) are expressed in the pharyngeal cells of likely glandular function, while one of the FoxQD paralogs is specifically expressed in the protonephridium. Overall, the evolution of Fox genes in flatworms appears to be characterized by an early contraction of the gene complement, followed by lineage-specific expansions that have enabled the co-option of newly evolved paralogs into novel physiological and developmental functions.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":"124-135"},"PeriodicalIF":2.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143006923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信