病毒密码子使用进化:对生存和致病性的影响。

IF 1.8 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shaikh Kaleem, Ujwal Dahal, Shivani Devi, Bhumandeep Kour, Sharanpreet Kour
{"title":"病毒密码子使用进化:对生存和致病性的影响。","authors":"Shaikh Kaleem, Ujwal Dahal, Shivani Devi, Bhumandeep Kour, Sharanpreet Kour","doi":"10.1007/s00239-025-10263-7","DOIUrl":null,"url":null,"abstract":"<p><p>Codon usage serves as a fundamental viral signature, influencing survival, adaptation, and pathogenicity. Viruses exhibit distinct codon usage patterns shaped by genome composition, host interactions, and evolutionary pressures. The differences between DNA and RNA viruses in codon usage reflect their replication strategies, host preferences, and genome constraints. Viral adaptation to host codon usage, genome size, and lifestyle further shapes translational efficiency and immune evasion mechanisms. Host tRNA abundance plays a crucial role in viral translation rates, while codon deoptimization is a strategy used by viruses to evade immune detection. Additionally, codon bias is linked to viral virulence, replication rates, and pathogenicity. Building on these concepts, this review synthesizes current knowledge on the interplay between virus-host translational interactions, codon bias-driven viral evolution, and their implications for pathogenesis, immune evasion, and epidemiology, while also outlining their practical applications in vaccine development, antiviral strategies, and viral diagnostics. We discuss current challenges in codon usage studies, including context-dependent variations and limited experimental validation, and propose future research directions that integrate computational and experimental approaches to deepen our understanding of viral codon bias and its role in evolution, host adaptation, and disease control.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Codon Usage Evolution in Viruses: Implications for Survival and Pathogenicity.\",\"authors\":\"Shaikh Kaleem, Ujwal Dahal, Shivani Devi, Bhumandeep Kour, Sharanpreet Kour\",\"doi\":\"10.1007/s00239-025-10263-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Codon usage serves as a fundamental viral signature, influencing survival, adaptation, and pathogenicity. Viruses exhibit distinct codon usage patterns shaped by genome composition, host interactions, and evolutionary pressures. The differences between DNA and RNA viruses in codon usage reflect their replication strategies, host preferences, and genome constraints. Viral adaptation to host codon usage, genome size, and lifestyle further shapes translational efficiency and immune evasion mechanisms. Host tRNA abundance plays a crucial role in viral translation rates, while codon deoptimization is a strategy used by viruses to evade immune detection. Additionally, codon bias is linked to viral virulence, replication rates, and pathogenicity. Building on these concepts, this review synthesizes current knowledge on the interplay between virus-host translational interactions, codon bias-driven viral evolution, and their implications for pathogenesis, immune evasion, and epidemiology, while also outlining their practical applications in vaccine development, antiviral strategies, and viral diagnostics. We discuss current challenges in codon usage studies, including context-dependent variations and limited experimental validation, and propose future research directions that integrate computational and experimental approaches to deepen our understanding of viral codon bias and its role in evolution, host adaptation, and disease control.</p>\",\"PeriodicalId\":16366,\"journal\":{\"name\":\"Journal of Molecular Evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00239-025-10263-7\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00239-025-10263-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

密码子的使用是病毒的基本特征,影响生存、适应和致病性。病毒表现出由基因组组成、宿主相互作用和进化压力形成的独特密码子使用模式。DNA和RNA病毒在密码子使用上的差异反映了它们的复制策略、宿主偏好和基因组限制。病毒对宿主密码子使用、基因组大小和生活方式的适应进一步塑造了翻译效率和免疫逃避机制。宿主tRNA丰度在病毒翻译率中起着至关重要的作用,而密码子反优化是病毒逃避免疫检测的一种策略。此外,密码子偏倚与病毒毒力、复制率和致病性有关。在这些概念的基础上,本文综合了病毒-宿主转译相互作用、密码子偏倚驱动的病毒进化之间相互作用的现有知识,及其对发病机制、免疫逃避和流行病学的影响,同时概述了它们在疫苗开发、抗病毒策略和病毒诊断方面的实际应用。我们讨论了当前密码子使用研究中的挑战,包括上下文依赖性变化和有限的实验验证,并提出了整合计算和实验方法的未来研究方向,以加深我们对病毒密码子偏差及其在进化,宿主适应和疾病控制中的作用的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Codon Usage Evolution in Viruses: Implications for Survival and Pathogenicity.

Codon usage serves as a fundamental viral signature, influencing survival, adaptation, and pathogenicity. Viruses exhibit distinct codon usage patterns shaped by genome composition, host interactions, and evolutionary pressures. The differences between DNA and RNA viruses in codon usage reflect their replication strategies, host preferences, and genome constraints. Viral adaptation to host codon usage, genome size, and lifestyle further shapes translational efficiency and immune evasion mechanisms. Host tRNA abundance plays a crucial role in viral translation rates, while codon deoptimization is a strategy used by viruses to evade immune detection. Additionally, codon bias is linked to viral virulence, replication rates, and pathogenicity. Building on these concepts, this review synthesizes current knowledge on the interplay between virus-host translational interactions, codon bias-driven viral evolution, and their implications for pathogenesis, immune evasion, and epidemiology, while also outlining their practical applications in vaccine development, antiviral strategies, and viral diagnostics. We discuss current challenges in codon usage studies, including context-dependent variations and limited experimental validation, and propose future research directions that integrate computational and experimental approaches to deepen our understanding of viral codon bias and its role in evolution, host adaptation, and disease control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Evolution
Journal of Molecular Evolution 生物-进化生物学
CiteScore
5.50
自引率
2.60%
发文量
36
审稿时长
3 months
期刊介绍: Journal of Molecular Evolution covers experimental, computational, and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features, from the initial formation of macromolecular systems through their evolution at the molecular level, the co-evolution of their functions in cellular and organismal systems, and their influence on organismal adaptation, speciation, and ecology. Topics addressed include the evolution of informational macromolecules and their relation to more complex levels of biological organization, including populations and taxa, as well as the molecular basis for the evolution of ecological interactions of species and the use of molecular data to infer fundamental processes in evolutionary ecology. This coverage accommodates such subfields as new genome sequences, comparative structural and functional genomics, population genetics, the molecular evolution of development, the evolution of gene regulation and gene interaction networks, and in vitro evolution of DNA and RNA, molecular evolutionary ecology, and the development of methods and theory that enable molecular evolutionary inference, including but not limited to, phylogenetic methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信