Journal of Integrative Agriculture最新文献

筛选
英文 中文
Twinstar is a chitin synthase interacting protein with an essential role in insect cuticle biosynthesis 双星是一种几丁质合成酶互作蛋白,在昆虫角质层生物合成过程中发挥着重要作用
IF 4.8 1区 农林科学
Journal of Integrative Agriculture Pub Date : 2024-05-01 DOI: 10.1016/j.jia.2024.05.027
Xu Zou, Jiqiang Chen, Yanwei Duan, Weixing Zhu, Qing Yang
{"title":"Twinstar is a chitin synthase interacting protein with an essential role in insect cuticle biosynthesis","authors":"Xu Zou, Jiqiang Chen, Yanwei Duan, Weixing Zhu, Qing Yang","doi":"10.1016/j.jia.2024.05.027","DOIUrl":"https://doi.org/10.1016/j.jia.2024.05.027","url":null,"abstract":"","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141145274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organic fertilizer enhances soil aggregate stability by altering greenhouse soil content of iron oxide and organic carbon 有机肥通过改变温室土壤中氧化铁和有机碳的含量来增强土壤团聚体的稳定性
IF 4.8 1区 农林科学
Journal of Integrative Agriculture Pub Date : 2024-05-01 DOI: 10.1016/j.jia.2024.05.026
Lijun Ren, Han Yang, Jin Li, Nan Zhang, Yanyu Han, Hongtao Zou, Yulong Zhang
{"title":"Organic fertilizer enhances soil aggregate stability by altering greenhouse soil content of iron oxide and organic carbon","authors":"Lijun Ren, Han Yang, Jin Li, Nan Zhang, Yanyu Han, Hongtao Zou, Yulong Zhang","doi":"10.1016/j.jia.2024.05.026","DOIUrl":"https://doi.org/10.1016/j.jia.2024.05.026","url":null,"abstract":"","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141135874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FvVam6 is associated with fungal development and fumonisin biosynthesis via vacuole morphology regulation in Fusarium verticillioides1 FvVam6 通过液泡形态调控轮枝镰刀菌中真菌的发育和烟曲霉毒素的生物合成1
IF 4.8 1区 农林科学
Journal of Integrative Agriculture Pub Date : 2024-05-01 DOI: 10.1016/j.jia.2024.05.023
Jie Liu, Jie Zhang, Huijuan Yan, Tuyong Yi, Won Bo Shim, Zehua Zhou
{"title":"FvVam6 is associated with fungal development and fumonisin biosynthesis via vacuole morphology regulation in Fusarium verticillioides1","authors":"Jie Liu, Jie Zhang, Huijuan Yan, Tuyong Yi, Won Bo Shim, Zehua Zhou","doi":"10.1016/j.jia.2024.05.023","DOIUrl":"https://doi.org/10.1016/j.jia.2024.05.023","url":null,"abstract":"","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141042713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An InDel in the Promoter of Ribosomal Protein S27-like Gene Regulates Skeletal Muscle Growth in Pigs 核糖体蛋白 S27 样基因启动子中的 InDel 可调控猪骨骼肌的生长
IF 4.8 1区 农林科学
Journal of Integrative Agriculture Pub Date : 2024-05-01 DOI: 10.1016/j.jia.2024.05.005
Xiaoqin Liu, Xinhao Fan, Junyu Yan, Longchao Zhang, Lixian Wang, Honor Calnan, Yalan Yang, Graham Gardner, Rong Zhou, Zhonglin Tang
{"title":"An InDel in the Promoter of Ribosomal Protein S27-like Gene Regulates Skeletal Muscle Growth in Pigs","authors":"Xiaoqin Liu, Xinhao Fan, Junyu Yan, Longchao Zhang, Lixian Wang, Honor Calnan, Yalan Yang, Graham Gardner, Rong Zhou, Zhonglin Tang","doi":"10.1016/j.jia.2024.05.005","DOIUrl":"https://doi.org/10.1016/j.jia.2024.05.005","url":null,"abstract":"","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141036774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GhWRKY75 positively regulates GhPR6-5b via binding to a W-box TTGAC (C/T) to orchestrate cotton resistance to Verticillium dahliae GhWRKY75 通过与 W-box TTGAC (C/T) 结合对 GhPR6-5b 进行正向调节,从而协调棉花对大丽轮枝菌的抗性
IF 4.8 1区 农林科学
Journal of Integrative Agriculture Pub Date : 2024-05-01 DOI: 10.1016/j.jia.2024.05.017
Qichao Chai, Meina Zheng, Yanli Li, Mingwei Gao, Yongcui Wang, Xiuli Wang, Chao Zhang, Hui Jiang, Ying Chen, Jiabao Wang, Junsheng Zhao
{"title":"GhWRKY75 positively regulates GhPR6-5b via binding to a W-box TTGAC (C/T) to orchestrate cotton resistance to Verticillium dahliae","authors":"Qichao Chai, Meina Zheng, Yanli Li, Mingwei Gao, Yongcui Wang, Xiuli Wang, Chao Zhang, Hui Jiang, Ying Chen, Jiabao Wang, Junsheng Zhao","doi":"10.1016/j.jia.2024.05.017","DOIUrl":"https://doi.org/10.1016/j.jia.2024.05.017","url":null,"abstract":"","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141028867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exogenous melatonin improves cotton yield under drought stress by enhancing root development and reducing root damage 外源褪黑激素通过促进根系发育和减少根系损伤提高干旱胁迫下的棉花产量
IF 4.8 1区 农林科学
Journal of Integrative Agriculture Pub Date : 2024-04-11 DOI: 10.1016/j.jia.2024.04.011
Lingxiao Zhu, Hongchun Sun, Ranran Wang, Congcong Guo, Liantao Liu, Yongjiang Zhang, Ke Zhang, Zhiying Bai, Anchang Li, Jiehua Zhu, Cundong Li
{"title":"Exogenous melatonin improves cotton yield under drought stress by enhancing root development and reducing root damage","authors":"Lingxiao Zhu, Hongchun Sun, Ranran Wang, Congcong Guo, Liantao Liu, Yongjiang Zhang, Ke Zhang, Zhiying Bai, Anchang Li, Jiehua Zhu, Cundong Li","doi":"10.1016/j.jia.2024.04.011","DOIUrl":"https://doi.org/10.1016/j.jia.2024.04.011","url":null,"abstract":"The exogenous application of melatonin by the root drenching method is an effective way to improve crop drought resistance. However, the optimal concentration of melatonin by root drenching and the physiological mechanisms underlying melatonin-induced drought tolerance in cotton ( L.) roots remain elusive. This study determined the optimal concentration of melatonin by root drenching and explored the protective effects of melatonin on cotton roots. The results showed that 50 μmol L melatonin was optimal and significantly mitigated the inhibitory effect of drought on cotton seedling growth. Exogenous melatonin promoted root development in drought-stressed cotton plants by remarkably increasing the root length, projected area, surface area, volume, diameter, and biomass. Melatonin also mitigated the drought-weakened photosynthetic capacity of cotton and regulated the endogenous hormone contents by regulating the relative expression levels of hormone-synthesis genes under drought stress. Melatonin-treated cotton seedlings maintained optimal enzymatic and non-enzymatic antioxidant capacities, and produced relatively lower levels of reactive oxygen species and malondialdehyde, thus reducing the drought stress damage to cotton roots (such as mitochondrial damage). Moreover, melatonin alleviated the yield and fiber length declines caused by drought stress. Taken together, these findings show that root drenching with exogenous melatonin increases the cotton yield by enhancing root development and reducing the root damage induced by drought stress. In summary, these results provide a foundation for the application of melatonin in the field by the root drenching method.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EjGASA6 promotes flowering and root elongation by enhancing gibberellin biosynthesis EjGASA6 通过增强赤霉素的生物合成促进开花和根系伸长
IF 4.8 1区 农林科学
Journal of Integrative Agriculture Pub Date : 2024-03-22 DOI: 10.1016/j.jia.2024.03.066
Qian Chen, Shunyuan Yong, Fan Xu, Hao Fu, Jiangbo Dang, Qiao He, Danlong Jing, Di Wu, Guolu Liang, Qigao Guo
{"title":"EjGASA6 promotes flowering and root elongation by enhancing gibberellin biosynthesis","authors":"Qian Chen, Shunyuan Yong, Fan Xu, Hao Fu, Jiangbo Dang, Qiao He, Danlong Jing, Di Wu, Guolu Liang, Qigao Guo","doi":"10.1016/j.jia.2024.03.066","DOIUrl":"https://doi.org/10.1016/j.jia.2024.03.066","url":null,"abstract":"The () gene family is involved in the regulation of gene expression and plant growth, development, and stress responses. To investigate the function of loquat genes in the growth and developmental regulation of plants, a loquat gene homologous to was cloned. expression was induced by gibberellin, and ectopic transgenic plants containing this gene exhibited earlier bloom and longer primary roots since these phenotypic characteristics are related to higher gibberellin content. Transcriptome analysis and qRT-PCR results showed that the expression levels of and which encode key enzymes in gibberellin biosynthesis, were significantly increased. Furthermore, we confirmed that EjGASA6 could promote the expression of the luciferase reporter system. Overall, our results suggest that promotes blooming and main-root elongation by positively regulating gibberellin biosynthesis. These findings broaden our understanding of the role of GASAs in plant development and growth, and lay the groundwork for future research into the functions of in regulating loquat growth and development.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140830323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The multiple roles of crop structural change in productivity, nutrition and environment in China: A decomposition analysis 中国作物结构变化对生产力、营养和环境的多重作用:分解分析
IF 4.8 1区 农林科学
Journal of Integrative Agriculture Pub Date : 2024-03-22 DOI: 10.1016/j.jia.2024.03.064
Xiangyang Zhang, Yumei Zhang, Shenggen Fan
{"title":"The multiple roles of crop structural change in productivity, nutrition and environment in China: A decomposition analysis","authors":"Xiangyang Zhang, Yumei Zhang, Shenggen Fan","doi":"10.1016/j.jia.2024.03.064","DOIUrl":"https://doi.org/10.1016/j.jia.2024.03.064","url":null,"abstract":"China’s crop structure has undergone significant changes in the last two decades since 2000, with an increase in the share of cereals, vegetables, and fruit, squeezing out other crops. As a result, land productivity, nutrient supply, and carbon emissions have changed. How to reallocate limited farmland among crops to achieve the multiple goals of agrifood systems becomes an important issue. This study explores the sources of land productivity and nutrition supply growth and carbon emissions reduction, and identifies the multiple roles of crop structural change from 2003 to 2020 based on a decomposition analysis. The results reveal that the growth within crops is still the primary driver in land productivity and nutrition supply and the reduction in carbon emissions. However, structural change also plays various roles at different periods. From 2003 to 2010, crop structural change increased the total calorie supply but lowered land productivity and contributed at least 70% of the total growth of carbon emissions. The crop structure was relatively stable, and their effects were modest from 2010 to 2015. From 2015 to 2020, the crop structural change began to play a greater role and generate synergistic effects in improving land productivity, micronutrient supply, and reducing carbon emissions, contributing to approximately a quarter of the growth of land productivity and 30% of total carbon emissions reduction. These results suggest that strategies for crop structural change should comprehensively consider its multiple impacts, aiming to achieve co-benefits while minimizing trade-offs.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140830038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel histone methyltransferase gene CgSDG40 positively regulates carotenoid biosynthesis during citrus fruit ripening 新型组蛋白甲基转移酶基因 CgSDG40 积极调控柑橘果实成熟过程中类胡萝卜素的生物合成
IF 4.8 1区 农林科学
Journal of Integrative Agriculture Pub Date : 2024-03-22 DOI: 10.1016/j.jia.2024.03.068
Jialing Fu, Qingjiang Wu, Xia Wang, Juan Sun, Li Liao, Li Li, Qiang Xu
{"title":"A novel histone methyltransferase gene CgSDG40 positively regulates carotenoid biosynthesis during citrus fruit ripening","authors":"Jialing Fu, Qingjiang Wu, Xia Wang, Juan Sun, Li Liao, Li Li, Qiang Xu","doi":"10.1016/j.jia.2024.03.068","DOIUrl":"https://doi.org/10.1016/j.jia.2024.03.068","url":null,"abstract":"The flesh color of pummelo () fruits is highly diverse and largely depends on the level of carotenoids, which are beneficial to human health. It is vital to investigate the regulatory network of carotenoid biosynthesis to improve the carotenoid content in pummelo. However, the molecular mechanism underlying carotenoid accumulation in pummelo is not fully understood. In this study, we identified a novel histone methyltransferase gene, , involved in carotenoid regulation by analyzing the flesh transcriptome of typical white-fleshed pummelo, red-fleshed pummelo and extreme-colored F hybrids from a segregated pummelo population. Expression of corresponded to flesh color change and was highly coexpressed with . Interestingly, and are located physically adjacent to each other on the chromosome in opposite directions, sharing a partially overlapping promoter region. Subcellular localization analysis indicated that CgSDG40 localizes to the nucleus. Overexpression of significantly increased the total carotenoid content in citrus calli relative to that in wild type. In addition, expression of was significantly activated in overexpression lines relative to wild type. Taken together, our findings reveal a novel histone methyltransferase regulator, CgSDG40, involved in the regulation of carotenoid biosynthesis in citrus and provide new strategies for molecular design breeding and genetic improvement of fruit color and nutritional quality.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-fat microwaved peanut snacks production: Effect of defatting treatment on structural characteristics, texture, color, and nutrition 低脂微波花生点心的生产:脱脂处理对结构特征、口感、色泽和营养的影响
IF 4.8 1区 农林科学
Journal of Integrative Agriculture Pub Date : 2024-03-22 DOI: 10.1016/j.jia.2024.03.069
Bo Jiao, Xin Guo, Yiying Chen, Shah Faisal, Wenchao Liu, Xiaojie Ma, Bicong Wu, Guangyue Ren, Qiang Wang
{"title":"Low-fat microwaved peanut snacks production: Effect of defatting treatment on structural characteristics, texture, color, and nutrition","authors":"Bo Jiao, Xin Guo, Yiying Chen, Shah Faisal, Wenchao Liu, Xiaojie Ma, Bicong Wu, Guangyue Ren, Qiang Wang","doi":"10.1016/j.jia.2024.03.069","DOIUrl":"https://doi.org/10.1016/j.jia.2024.03.069","url":null,"abstract":"This study develops low-fat microwaved peanut snacks (LMPS) using partially defatted peanuts (PDP) with different defatting ratios, catering to people’s pursuit of healthy, low-fat cuisine. The effects of defatting treatment on the structural characteristics, texture, color, and nutrient composition of LMPS were comprehensively explored. The structural characteristics of LMPS were characterized using X-ray micro-computed tomography (Micro-CT) and scanning electron microscope (SEM). The results demonstrated that the porosity, pore number, pore volume, brightness, brittleness, protein content, and total sugar content of LMPS all significantly increased (<0.05) with the increase in the defatting ratio. At the micro level, porous structure, cell wall rupture, and loss of intracellular material could be observed in LMPS after defatting treatments. LMPS made from PDP with a defatting ratio of 64.44% had the highest internal pore structural parameters (porosity 59%, pore number 85.3×10, pore volume 68.23 mm), the brightest color (L* 78.39±0.39), the best brittleness (3.64±0.21) mm), and the best nutrition (high protein content, (34.02±0.38)%; high total sugar content, (17.45±0.59)%; low-fat content, (27.58±0.85)%). The study provides a theoretical basis for the quality improvement of LMPS.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141571039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信