Journal of Loss Prevention in The Process Industries最新文献

筛选
英文 中文
Small scale pool fires: The case of toluene 小规模池火:甲苯案例
IF 3.6 3区 工程技术
Journal of Loss Prevention in The Process Industries Pub Date : 2024-09-10 DOI: 10.1016/j.jlp.2024.105430
{"title":"Small scale pool fires: The case of toluene","authors":"","doi":"10.1016/j.jlp.2024.105430","DOIUrl":"10.1016/j.jlp.2024.105430","url":null,"abstract":"<div><p>Industrial applications adopting toluene as a solvent have been largely extended in recent years, including solutions within the framework of the energy transition and energy storage technologies. The potential use of this flammable compound in a different set of operative conditions and compositions requires a comprehensive and complete knowledge of its fire behaviour and combustion kinetic. To this scope, an innovative experimental procedure applicable to liquid reactive systems was developed for this scope and implemented at different boundary conditions. More specifically, the specimen was exposed to air and heat fluxes between 7 and 50 kW/m<sup>2</sup>, at a constant sample surface of 0.01 m<sup>2</sup>, an initial sample thickness of 0.01 m, and a distance between the sample and the horizontally oriented conical-shaped heater of 0.025 m. Measurements were compared with data from the current literature, when available, demonstrating the robustness and validity of the adopted procedure. Although an increase in the external flux leads to growing mass burning rates (i.e., from 0.47 g/s to 0.85 g/s), negligible effects on the ignitability were observed. Conversely, a peak in the heat release rate at 35 kW/m<sup>2</sup> was measured. The observed reduction at higher external heat fluxes was attributed to less effective combustion, demonstrating that the maximum expected heat flux cannot be considered as an aprioristic worst-case scenario for the evaluation of pool fires. The collected data were, then, further utilized to obtain insights on the formation of the main products, including soot tendency. Based on the collected data a simplified kinetic model suitable for the computational fluid dynamics was proposed to reproduce the chemistry of the system.</p></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0950423024001888/pdfft?md5=92c63a933a3c20e53b12b7adecf89c37&pid=1-s2.0-S0950423024001888-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142167961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the explosion mechanism of two-phase organic dust — Based on polypropylene/propylene hybrid explosions as an example 两相有机粉尘爆炸机理研究--以聚丙烯/丙烯混合爆炸为例
IF 3.6 3区 工程技术
Journal of Loss Prevention in The Process Industries Pub Date : 2024-09-10 DOI: 10.1016/j.jlp.2024.105429
{"title":"Study on the explosion mechanism of two-phase organic dust — Based on polypropylene/propylene hybrid explosions as an example","authors":"","doi":"10.1016/j.jlp.2024.105429","DOIUrl":"10.1016/j.jlp.2024.105429","url":null,"abstract":"<div><p>A two-phase organic dust explosion is more complex than a single dust or gas explosion and poses a more significant threat to industrial safety production. To elucidate the explosion mechanism of two-phase organic dust, this study investigated the characteristics of flame propagation in PP/propylene hybrid explosions and revealed the flame propagation mechanism. The research findings indicate that adding propylene makes the flame brighter and more continuous, and velocity and temperature increase significantly. The introduction of propylene shifts the control of flame propagation from a process dominated by pyrolysis explosion kinetics to one governed by premixed gas explosion kinetics. Dimensionless characteristic numbers Bi and Da were introduced further to analyze the control mechanism of the dust explosion process. It was found that the explosion process was mainly diffusion flame combustion and premixed gas phase combustion.</p></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142167962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tank pool fire domino effect prevention by inherently safer layout planning: A techno-economic analytical index 通过更安全的布局规划防止油罐池火灾的多米诺骨牌效应:技术经济分析指标
IF 3.6 3区 工程技术
Journal of Loss Prevention in The Process Industries Pub Date : 2024-09-10 DOI: 10.1016/j.jlp.2024.105428
{"title":"Tank pool fire domino effect prevention by inherently safer layout planning: A techno-economic analytical index","authors":"","doi":"10.1016/j.jlp.2024.105428","DOIUrl":"10.1016/j.jlp.2024.105428","url":null,"abstract":"<div><p>Tank pool fire domino effects, represented by their capacities of accident consequence escalation and extensive damages, present substantial safety challenges within chemical storage systems. In this work, the inherent safety concept is introduced to proactively address these challenges while ensuring cost-effectiveness. Accordingly, a dedicated novel metric called Inherent Safety &amp; Economic Risk Index (IS&amp;ERI) is proposed to make safety and cost trade-offs for indicating the risk levels of various tank farm layout options. To develop the IS&amp;ERI, the Dow's loss estimate procedure is adapted for representing the economic implications, and the Bayesian Networks are employed for indicating the failure probabilities of target units considering the synergistic effects of multiple pool fires. Two improved graph theory metrics are presented to determine the root nodes of the Bayesian Networks. For demonstrating the proposed IS&amp;ERI, a case study is conducted and the results show that the IS&amp;ERI of 4 tank farm layout options are 0.2991, 0.3120, 0.3525, and 0.2285, implying that Option 4 is the best layout with the lowest potential loss in case of the pool fire domino effects. As the key research contribution, the IS&amp;ERI is presented and it can be used as a useful tool to compare and select the best tank farm layout option to eliminate or significantly reduce the knock-on effects of tank pool fires at their sources.</p></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142229497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulation of LNG tank container leakage and dispersion on anchoring inland carrying vessel 内陆运输船锚泊时液化天然气罐式集装箱泄漏和扩散模拟
IF 3.6 3区 工程技术
Journal of Loss Prevention in The Process Industries Pub Date : 2024-09-10 DOI: 10.1016/j.jlp.2024.105427
{"title":"Simulation of LNG tank container leakage and dispersion on anchoring inland carrying vessel","authors":"","doi":"10.1016/j.jlp.2024.105427","DOIUrl":"10.1016/j.jlp.2024.105427","url":null,"abstract":"<div><p>Liquified Natural Gas (LNG) is becoming an important energy source as clean energy. In cities with inland waterways, LNG tank containers transported by inland vessels will be the primary mode of transportation. However, the night sailing of LNG carriers is typically prohibited considering the safety of the vessels and surroundings. Inland LNG tank container carriers have to wait at specific anchorages during the prohibition period and complete the full voyage in segments. During the anchoring phase, the vessels pose significant risks with LNG leakage and dispersion as the primary ones. In this study, taking the anchoring LNG tank container carrier in the Yangtze River in China as a case study, a comparative simulation study is performed using the computational fluid dynamics model to investigate the influencing risk factors. The leakage and dispersion of LNG under extremely unfavorable conditions are also analyzed to calculate the safety area and provide the corresponding safety management suggestions. The comparative analysis results indicate that the leakage aperture is the primary influential factor, followed by wind speed and temperature. The simulations under extremely unfavorable conditions reveal a maximum dispersion range of 190 m and a safety zone radius of 310 m. These results provide important technical guidance and reference values for the case of leakage and dispersion on inland waterways.</p></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142172583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental study on the impact of airflow velocity and pipeline diameter on dust explosions in vessel-pipeline pneumatic conveying 容器-管道气力输送中气流速度和管道直径对粉尘爆炸影响的实验研究
IF 3.6 3区 工程技术
Journal of Loss Prevention in The Process Industries Pub Date : 2024-09-07 DOI: 10.1016/j.jlp.2024.105419
{"title":"Experimental study on the impact of airflow velocity and pipeline diameter on dust explosions in vessel-pipeline pneumatic conveying","authors":"","doi":"10.1016/j.jlp.2024.105419","DOIUrl":"10.1016/j.jlp.2024.105419","url":null,"abstract":"<div><p>To ensure the process safety of powder particles during pneumatic transport, a dust explosion experimental apparatus was designed to simulate the dust transport process. The system is supplied with a stable airflow by a high-pressure fan, capable of continuously transferring dust from the vessel to the pipeline at a controllable speed. Dust explosion experiments were meticulously executed by applying 1 kJ of ignition energy to the transported dust particles at airflow velocities of 5, 10, and 15 m/s. This study examines the effects of dust concentration, airflow velocity, and pipe diameter on explosion characteristics and delves into the mechanisms these effects through a detailed analysis of experimental results. The results demonstrate that the starch explosion flame progresses through four distinct stages within the vessel: flame development, flame stretching towards the pipe, intense combustion of starch particles, and complete combustion of the particles. As airflow velocity and pipe diameter increase, the stretching effect on the flame becomes more pronounced. At an airflow velocity of 15 m/s within a pipeline, a balance is struck between intensified particle combustion rates and unconstrained discharge, resulting in a maximum explosion pressure of 135.56 kPa for a 100 mm diameter pipe, with a maximum pressure rise rate of 7.27 MPa/s. Additionally, flame propagation velocity is higher at the pipe inlet. Different flame behaviors were observed inside the pipeline under varying airflow speeds. Compared to previous studies that utilized high-pressure gas to create dust clouds within vessels for explosion experiments, the results of this study underscore the crucial impact of airflow velocity on dust explosions. This research provides critical parameters for explosion prevention and presents a case study on the safety of dust handling processes.</p></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of major process accident indicators based on Industrial Internet 基于工业互联网的主要过程事故指标的开发
IF 3.6 3区 工程技术
Journal of Loss Prevention in The Process Industries Pub Date : 2024-09-07 DOI: 10.1016/j.jlp.2024.105418
{"title":"Development of major process accident indicators based on Industrial Internet","authors":"","doi":"10.1016/j.jlp.2024.105418","DOIUrl":"10.1016/j.jlp.2024.105418","url":null,"abstract":"<div><p>In recent years, Chinese-produced bulk chemical products have consistently ranked among the world’s leading suppliers. The scale of individual petrochemical plants and chemical parks has grown significantly, resulting in increased complexity that can contribute to higher levels of uncertainty surrounding potential losses. MA (major accident) indicators can provide a comprehensive assessment of a plant’s safety performance. This study focuses on three primary objectives: Firstly, utilizing process safety management software powered by Industrial Internet technology, we develop MA indicators. Secondly, applying the Systems-Theoretic Accident Model and Processes (STAMP) theory, this work analyzes the logical relationship between MA indicators and accidents. STAMP provides a more comprehensive understanding of indicators involving multiple barriers. Lastly, drawing upon a large language model, this paper retrospectively analyzes 212 accident reports to verify the connection between the index and actual accidents. It is noteworthy that the MA indicators adhere to SMART criteria for effective measurement.</p></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probability analysis considering the temporal properties of fire-induced domino effects 考虑火灾引发的多米诺骨牌效应的时间特性的概率分析
IF 3.6 3区 工程技术
Journal of Loss Prevention in The Process Industries Pub Date : 2024-09-06 DOI: 10.1016/j.jlp.2024.105420
{"title":"Probability analysis considering the temporal properties of fire-induced domino effects","authors":"","doi":"10.1016/j.jlp.2024.105420","DOIUrl":"10.1016/j.jlp.2024.105420","url":null,"abstract":"<div><p>If a fire occurs in an area with multiple installations storing or handling flammable materials, it may escalate from one installation to another to form so-called domino effects. The propagation of fire-induced domino effects has temporal properties due to the heating effect of the thermal radiation of fires. Under the action of thermal radiation, the surrounding installations may be damaged, and the probability of damage can be estimated by Probit models. As a result, the propagation path exhibits characteristics of randomness. As new installations catch fire due to domino effects, the thermal radiation received by a target installation changes, so that the damage probability changes dynamically throughout the accident process. This study aims at further improve the previous study of the matrix modeling approach for fire-induced domino effects by considering the heating process of facilities under fire accidents. The analysis process incorporating the damage probability calculation algorithm is presented. The improved approach is illustrated by the study of two cases.</p></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The weakening and suppression effects of cavities on the propagation of gas explosions in pipes 空腔对管道中气体爆炸传播的削弱和抑制作用
IF 3.6 3区 工程技术
Journal of Loss Prevention in The Process Industries Pub Date : 2024-09-04 DOI: 10.1016/j.jlp.2024.105417
{"title":"The weakening and suppression effects of cavities on the propagation of gas explosions in pipes","authors":"","doi":"10.1016/j.jlp.2024.105417","DOIUrl":"10.1016/j.jlp.2024.105417","url":null,"abstract":"<div><p>To reduce the hazard of gas explosions, the weakening and inhibiting effects of additional cavities and obstacle deflectors on the propagation of gas explosions in straight pipes were investigated by means of comparative experiments in a self-constructed experimental platform. The results show that an additional cavity in the straight pipe can reduce the intensity of the gas explosion. Moreover, the obstacle deflector in front of the cavity can further weaken the intensity of the gas explosion. When the obstacle was located 0 m and 0.1 m in front of the cavity, the explosion flame and shockwave were deflected to hit the inner wall of the cavity, then rebounded, and sufficiently diluted by the air in cavity, thus the subsequent development of the explosion was restricted. The second peak overpressure was reduced by 5.15% and 27.82%, respectively, compared to that of the pipe only with a cavity, and the explosion flame was diverted and quenched in the cavity. When the obstacle was located 0.2 m in front of the cavity, the intensity of the gas explosion increased, and the flame quickly crossed through the cavity and rushed out of the pipe end. An obstacle in the middle of the vertical direction is more effective at reducing the strength of the gas explosion than an obstacle located at the bottom. The minimum amount of ABC dry powder (containing 75% ammonium dihydrogen phosphate and 15% ammonium sulfate) needed to prevent gas explosions is reduced by the additional cavity in the straight pipe. When the obstacle is located in front of the cavity, the minimum amount of ABC dry powder available for explosion prevention is further reduced. The reduction in the amount of ABC dry powder required for explosion prevention also intuitively reflects the weakening effect of the cavity and obstacle deflector on the gas explosion.</p></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S095042302400175X/pdfft?md5=71fe75caf9d08a0759147c46cc6c9757&pid=1-s2.0-S095042302400175X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical plant optimization layout based on the domino hazard index considering the fixed hazard unit outside the available area 基于多米诺危险指数的化工厂优化布局,考虑可用区域外的固定危险单元
IF 3.6 3区 工程技术
Journal of Loss Prevention in The Process Industries Pub Date : 2024-09-03 DOI: 10.1016/j.jlp.2024.105415
{"title":"Chemical plant optimization layout based on the domino hazard index considering the fixed hazard unit outside the available area","authors":"","doi":"10.1016/j.jlp.2024.105415","DOIUrl":"10.1016/j.jlp.2024.105415","url":null,"abstract":"<div><p>The layout of chemical plants is a significant step to promote the safe and efficient operation of a chemical factory. In the actual production process, the chemical process plant layout may be affected by immovable hazards outside the available layout area. In this paper, the external hazard unit is arranged as one of the chemical process plants. The domino effect potential of all chemical process plants is quantified by using the classical domino hazard index (DHI). A layout optimization model considering the effects of external hazard units has been proposed to obtain the optimal plant layout from economic and safety aspects. The feasible layout solutions are obtained under the orientation, boundary and non-overlapping constraints by the non-dominated sorting genetic algorithm II (NSGA-Ⅱ). The proposed model is further analyzed through a hypothetical case of three storage tanks outside the acrylic acid (AA) production plant layout area. The results show that the total cost range for the optimal solution is 650348–1365443 $, with corresponding DHI values ranging from 29 to 129. The plant with larger DHI value will be arranged to far away from the external hazard units to obtain a safer layout. This work can provide rational layout solutions for the layout designers to make different decisions according to the actual situation.</p></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cuboid obstacle influence on high-pressure jet dispersion: A CFD study 立方体障碍物对高压射流分散的影响:CFD 研究
IF 3.6 3区 工程技术
Journal of Loss Prevention in The Process Industries Pub Date : 2024-09-03 DOI: 10.1016/j.jlp.2024.105416
{"title":"Cuboid obstacle influence on high-pressure jet dispersion: A CFD study","authors":"","doi":"10.1016/j.jlp.2024.105416","DOIUrl":"10.1016/j.jlp.2024.105416","url":null,"abstract":"<div><p>In the context of the process industry safety, one of the main accidental scenarios is the release of high-pressure gaseous material. Since natural gas is highly flammable, the likelihood of ignition increases as the jet develops, with a maximum area of effect related to its lower flammability limit (<em>LFL</em>). This work aims at simulating and evaluating the interaction between high-pressure natural gas jets and cuboid obstacles, which were selected due to their prevalence in the process industry as storage units or buildings present in industrial parks. The maximum extent of the cloud at the <em>LFL</em> of natural gas is often influenced by the jet-obstacle interactions, necessitating complex numerical methods like computational fluid dynamics (CFD) for accurate estimation. Therefore, this study provides pivotal insights that challenge traditional modelling approaches, like integral ones, offering cost-effective alternatives where needed without compromising on safety.</p><p>The findings indicate that using a CFD approach is not always necessary, as it largely depends on the storage pressure, diameter size, and the release height of the jet. At storage pressures of 65–130 bar with an orifice diameter of 2.54 cm, and a release height above 2.75 m, simpler methods like integral models are applicable without any substantial reliability loss. This is especially true when the cuboid obstacle is farther away from the release source. At lower release heights, especially if coupled with a larger orifice diameter, the CFD approach should be utilised as jet-cuboid interactions become highly relevant to the development of the jet.</p></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0950423024001748/pdfft?md5=2c9e5678bc9173a7f99f67a40900560f&pid=1-s2.0-S0950423024001748-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142150250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信