Journal of Liposome Research最新文献

筛选
英文 中文
Micro-scale quantitative analysis of sterol content in liposomes. 脂质体中固醇含量的微尺度定量分析。
IF 3.6 4区 医学
Journal of Liposome Research Pub Date : 2025-03-01 Epub Date: 2024-08-12 DOI: 10.1080/08982104.2024.2388146
Laura Charlotte Paweletz, Norman Labedzki, Thomas Günther Pomorski
{"title":"Micro-scale quantitative analysis of sterol content in liposomes.","authors":"Laura Charlotte Paweletz, Norman Labedzki, Thomas Günther Pomorski","doi":"10.1080/08982104.2024.2388146","DOIUrl":"10.1080/08982104.2024.2388146","url":null,"abstract":"<p><p>The high complexity of biological membranes has driven the development and application of a wide range of model membrane systems. Among these models, liposomes are extensively used because of their versatility in mimicking cellular membranes with a wide range of lipid compositions. However, the accurate quantification of lipid components, such as sterols, within these models remains a critical requirement for validation, data interpretation, and comparison. Here, we present a reliable and sensitive colorimetric assay using the Zak color reaction, which we have specifically adapted for the quantification of sterols at the micro-scale level. The assay was evaluated using cholesterol, ergosterol, and sitosterol standards, reflecting the diversity of sterol species across organisms. The reaction mechanism involves the dehydration of sterols to form carbonium ions, which are oxidized to form various enylic carbonium ions with specific absorption peaks. Due to the different chemical structures of cholesterol, ergosterol, and sitosterol, the resulting spectra show that the colored reaction products are formed in different proportions. The stability and interconversion of these species over time were analyzed. Cholesterol and sitosterol showed a clear peak at 555 nm, while ergosterol had prominent peaks at shorter wavelengths. Sterol assays on liposomal preparations showed accurate sterol incorporation with minimal loss during processing steps. These results demonstrate that this assay provides a robust and accurate measurement of sterol content in large unilamellar vesicles, making it a valuable tool for liposomal studies.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"86-93"},"PeriodicalIF":3.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transdermal application of diacerin loaded-terpene enriched invasomes: an approach to augment anti-edema and nociception inhibition activity. 透皮应用富含二碳酸酯的萜类侵袭体:一种增强抗水肿和抑制痛觉活性的方法。
IF 3.6 4区 医学
Journal of Liposome Research Pub Date : 2025-03-01 Epub Date: 2024-07-29 DOI: 10.1080/08982104.2024.2382974
Sadek Ahmed, Michael M Farag, Mohamed A Sadek, Diana E Aziz
{"title":"Transdermal application of diacerin loaded-terpene enriched invasomes: an approach to augment anti-edema and nociception inhibition activity.","authors":"Sadek Ahmed, Michael M Farag, Mohamed A Sadek, Diana E Aziz","doi":"10.1080/08982104.2024.2382974","DOIUrl":"10.1080/08982104.2024.2382974","url":null,"abstract":"<p><p>This study aimed to formulate diacerein loaded terpene-enriched invasomes (DCN-TINV) to fulfill a fruitful management of osteoarthritis. A 2<sup>3</sup> factorial design was adopted, including A: cholesterol concentration (%w/v), B: ethanol volume (mL) and C: phosphatidylcholine: drug ratio as the studied factors. Invasomes were constructed using the thin film hydration technique. Herein, percent entrapment efficiency (EE%), particle size (PS), poly-dispersity index (PDI) and zeta potential (ZP) were statistically analyzed using Design-Expert<sup>®</sup> software to select the optimum formula. The selected criteria for detecting the optimum formula were restricting PS (<350 nm), dismissing PDI, magnifying ZP (as absolute value) and EE%. The selected formula was further scrutinized through multiple <i>in-vitro</i> studies, including Fourier-transform infrared spectroscopy, differential scanning calorimetry, pH measurement, stability study, release profile and transmission electron microscopy. Furthermore, the <i>ex-vivo performance was evaluated through ex-vivo</i> skin permeation and deposition. Finally, it was subjected to an array of <i>in-vivo</i> tests, namely Draize test, histopathology, <i>In-vivo skin penetration</i>, edema size, and nociception inhibition measurements. The optimum formula with desirability (0.913) demonstrated EE% (89.21% ± 2.12%), PS (319.75 ± 10.11 nm), ZP (-55 ± 3.96 mV) and a prolonged release profile. Intriguingly, revamped skin permeation (1143 ± 32.11 µg/cm<sup>2</sup>), nociception inhibition (77%) and <i>In-vivo skin penetration</i> (144 µm) compared to DCN suspension (285 ± 21.25 µg/cm<sup>2</sup>, 26% and 48 µm, respectively) were displayed. The optimum DCN-TINV exhibited plausible safety and stability profiles consolidated with auspicious efficacy for better management of osteoarthritis.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"1-14"},"PeriodicalIF":3.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of size and pH-sensitivity of liposomes on cellular uptake pathways and pharmacokinetics of encapsulated gemcitabine. 脂质体的大小和 pH 敏感性对包裹吉西他滨的细胞摄取途径和药代动力学的影响
IF 3.6 4区 医学
Journal of Liposome Research Pub Date : 2025-03-01 Epub Date: 2024-08-09 DOI: 10.1080/08982104.2024.2389969
Mingtan Tang, Sasi Bhushan Yarragudi, Patrick Pan, Kaiyun Yang, Manju Kanamala, Zimei Wu
{"title":"Effect of size and pH-sensitivity of liposomes on cellular uptake pathways and pharmacokinetics of encapsulated gemcitabine.","authors":"Mingtan Tang, Sasi Bhushan Yarragudi, Patrick Pan, Kaiyun Yang, Manju Kanamala, Zimei Wu","doi":"10.1080/08982104.2024.2389969","DOIUrl":"10.1080/08982104.2024.2389969","url":null,"abstract":"<p><p>To enhance cytoplasmic delivery efficiency, pH-sensitive liposomes (PSL) have been proposed as a novel strategy. To facilitate clinical translation, this study aims to understand the impact of both size and pH-sensitivity on cellular uptake pathways, intracellular trafficking and pharmacokinetics of liposomes. The large liposomes (130-160 nm) were prepared using thin-film hydration method, while small liposomes (∼60 nm) were fabricated using microfluidics, for both PSL and non-pH-sensitive liposomes (NPSL). Cellular uptake pathways and intracellular trafficking was investigated through confocal imaging with aid of various endocytosis inhibitors. Intracellular gemcitabine delivery by various liposomal formulations was quantified using HPLC, and the cytotoxicity was assessed via cell viability assays. Pharmacokinetics of gemcitabine loaded in various liposomes was evaluated in rats following intravenous administration. Larger liposomes had a higher loading capacity for hydrophilic gemcitabine (7% vs 4%). Small PSL exhibited superior cellular uptake compared to large PSL or NPSLs. Moreover, the alkalization of endosomes significantly attenuated the cellular uptake of PSL. Large liposomes (PSL and NPSL) predominantly entered cells via clathrin-dependent pathway, whereas small liposomes partially utilized caveolae-dependent pathway. However, the long circulation of the liposomes, as measured by the encapsulated gemcitabine, was compromised by both pH-sensitivity and size reduction (9.5 h vs 5.3 h). Despite this drawback, our results indicate that small PSL holds promise as vectors for the next generation of liposomal nanomedicine, owing to their superior cytoplasmic delivery efficiency.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"44-54"},"PeriodicalIF":3.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141912980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dyeing of polyacrylonitrile knitted fabric using liposomes. 使用脂质体对聚丙烯腈针织物进行染色。
IF 3.6 4区 医学
Journal of Liposome Research Pub Date : 2025-03-01 Epub Date: 2024-08-26 DOI: 10.1080/08982104.2024.2396107
Rıza Atav, Selin Güler Köylüoğlu, Aminoddin Haji, Uğur Ergünay
{"title":"Dyeing of polyacrylonitrile knitted fabric using liposomes.","authors":"Rıza Atav, Selin Güler Köylüoğlu, Aminoddin Haji, Uğur Ergünay","doi":"10.1080/08982104.2024.2396107","DOIUrl":"10.1080/08982104.2024.2396107","url":null,"abstract":"<p><p>In this study, it was aimed to analyze the effects of liposomes on the dyeing of polyacrylonitrile fabrics. For this purpose, firstly liposome synthesis was carried out, and then liposome production was confirmed by Fourier transform infrared spectroscopy analysis. Additionally, zeta potential measurements were carried out to see whether stable structures were formed. Then, a selected basic dye was encapsulated with a liposome and the possibilities of using these capsules as alternative to retarders in the dyeing of polyacrylonitrile fabrics were examined. According to results obtained, it can be said that the 1% solution of synthesized liposomes creates a more stable suspension with a polydispersity index of 0.472 and the average particle size of 165.2 nm. On the other hand, it has been revealed that if 1% liposome is used in dyeing, a kind of retarder effect can be achieved in the dyeing of polyacrylonitrile fabrics. Moreover, it can be said that the decrease in color efficiency, that is, the loss of yield, caused by the use of liposome at the end of dyeing is lower compared to the retarder. This is also a very important issue, because a good retarder is expected to slow down the dye uptake, but not reduce the dye intake too much at the end of the dyeing. Dyeing levelness (%) was found to be 96.1, 97.4, and 97.1 for dyeings without auxiliary, with 1% cationic retarder and with 1% liposome, respectively. Beyond this, no significant difference was observed in terms of fastness of dyeing.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"55-63"},"PeriodicalIF":3.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liposomal formulation of a vitamin C derivative: a promising strategy to increase skin permeability.
IF 3.6 4区 医学
Journal of Liposome Research Pub Date : 2025-02-21 DOI: 10.1080/08982104.2025.2466449
Alejandro Llamedo, Pablo Rodríguez, Carolina de Passos, Sandra Freitas-Rodriguez, Ana M Coto, Raquel G Soengas, Rebeca Alonso-Bartolomé
{"title":"Liposomal formulation of a vitamin C derivative: a promising strategy to increase skin permeability.","authors":"Alejandro Llamedo, Pablo Rodríguez, Carolina de Passos, Sandra Freitas-Rodriguez, Ana M Coto, Raquel G Soengas, Rebeca Alonso-Bartolomé","doi":"10.1080/08982104.2025.2466449","DOIUrl":"https://doi.org/10.1080/08982104.2025.2466449","url":null,"abstract":"<p><p>This study describes the development of a novel liposomal formulation incorporating 3-<i>O</i>-ethyl-L-ascorbic acid (EAA), a derivative of vitamin C. The EAA-loaded liposomes were fully characterized, particle size and zeta potential values suitable for drug delivery. The skin penetration studies revealed that liposomal formulation enhanced EAA retention in the skin compared to free EAA. Additionally, the impact of topical treatments with liposomal EAA on photo-aging markers in skin explants was investigated. EAA charged liposomes display a protective or stimulatory effect on cellular metabolism. Finally, liposomal EAA have a significant effect on the inflamatory markers, reducing the extracellular matrix degradation associated with UV-induced damage of skin. These findings provide valuable insights into the potential of liposomal formulations for the development of advanced cosmetic products.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"1-9"},"PeriodicalIF":3.6,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143476508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-ligand functionalized liposomes with iRGD/trastuzumab co-loaded with gefitinib and lycorine for enhanced metastatic breast cancer therapy.
IF 3.6 4区 医学
Journal of Liposome Research Pub Date : 2025-02-02 DOI: 10.1080/08982104.2025.2457453
Dilip Kumar Arya, Prashant Pandey, Anit Kumar, Kumarappan Chidambaram, Adel Al Fatease, Giriraj Pandey, Saurabh Srivastava, P S Rajinikanth
{"title":"Dual-ligand functionalized liposomes with iRGD/trastuzumab co-loaded with gefitinib and lycorine for enhanced metastatic breast cancer therapy.","authors":"Dilip Kumar Arya, Prashant Pandey, Anit Kumar, Kumarappan Chidambaram, Adel Al Fatease, Giriraj Pandey, Saurabh Srivastava, P S Rajinikanth","doi":"10.1080/08982104.2025.2457453","DOIUrl":"https://doi.org/10.1080/08982104.2025.2457453","url":null,"abstract":"<p><p>Personalized treatment strategies have greatly improved the efficacy of anticancer drugs. Nanocarriers, especially liposomes, function as excellent platform for the delivery of both hydrophilic and hydrophobic agents. iRGD is a peptide composed of 9-amino acid denoted as (iRGDP), enhances selective and intratumoral delivery of anticancer drugs. Trastuzumab (TMAB), mainly targets HER2-positive advanced stage breast cancer is an FDA-approved monoclonal antibody. Gefitinib (GEB) is an anticancer drug, effective against metastatic breast cancer (MBC), while Lycorine hydrochloride (LCOH), a naturally derived compound, possess both anti-inflammatory and anticancer properties. This research is mainly emphasizing on the preparation of GEB and LCOH-entrapped TPGS-COOH coated-liposomes, camouflaged with an antibody (TMAB) and cyclic peptide (iRGDP) for targeted delivery in MBC therapy. The developed multifunctional liposomes were studied for extensive <i>in vitro</i> cell line studies on MCF-7 cells. The half-maximum inhibitory concentration (IC-50) values of GEB and LCOH co-loaded single functionalized liposome (SFL) (iRGDP-LiP, and TMAB-LiP) and dual-functionalized liposome (DFL) (iRGDP-TMAB-LiP) on MCF-7 cells were 1.04 ± 0.023 μg/mL, 0.71 ± 0.018 μg/mL, and 0.56 ± 0.028 μg/mL, respectively. Inverted confocal laser scanning microscopy (ICLSM) revealed enhanced cellular internalization in SFL and DFL-treated groups tagged with coumarin-6 and rhodamine-B dye as compared to conventional liposome. The scratch assay revealed a marked reduction in cell migration, while DAPI staining confirmed enhanced nuclear condensation (NC) and nuclear fragmentation (NF) in SFL and DFL-treated groups. Moreover, flow cytometry demonstrated enhanced early and late apoptosis in SFL and DFL groups. These findings indicate that GEB and LCOH co-loaded multifunctional liposome holds promise as a multifaceted therapeutic approach for MBC therapy.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"1-15"},"PeriodicalIF":3.6,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143080263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Responsiveness of glycyrrhetinic acid modified liposome toward secretory phospholipase A2 and its growth inhibitory in Colo205 cells. 甘草次酸修饰脂质体对分泌型磷脂酶 A2 的反应及其在 Colo205 细胞中的生长抑制作用
IF 3.6 4区 医学
Journal of Liposome Research Pub Date : 2025-01-28 DOI: 10.1080/08982104.2025.2457465
Zhicheng Su, Yanjiao Liu
{"title":"Responsiveness of glycyrrhetinic acid modified liposome toward secretory phospholipase A<sub>2</sub> and its growth inhibitory in Colo205 cells.","authors":"Zhicheng Su, Yanjiao Liu","doi":"10.1080/08982104.2025.2457465","DOIUrl":"https://doi.org/10.1080/08982104.2025.2457465","url":null,"abstract":"<p><p>This study aimed to design a novel liposome containing GA modified phosphatidylcholine lipid (GA-PC Lip) and determine its susceptibility to tumor over-expressed secretory phospholipase A<sub>2</sub> (sPLA<sub>2</sub>) and its anti-cancer effect compared to conventional liposomes (Convention Lip). The liposomes were characterized for size, drug loading, encapsulation efficiency, and stability. A 6-CF release assay was conducted to assess the sensitivity of the liposomes to the tumor-overexpressed secretory phospholipase A<sub>2</sub> (sPLA<sub>2</sub>). <i>In vitro</i> experiment, the sPLA<sub>2</sub> levels in the Colo205 cell culture medium were detected by the Elisa kit and the anti-cancer effect of the oxaliplatin (L-OHP) loaded GA-PA Lip was analyzed by the CCK-8 assay. Results showed that both of L-OHP loaded formulations (GA-PC Lip and Convention Lip) had similar particle sizes of ∼100 nm and close entrapment efficiency values of 4.5-4.8%. The results of CF release assay indicated that the labeled GA-PC Lip had released more quickly than CF labeled Convention Lip in the presence of Bv sPLA<sub>2</sub> and GA-PC Lip had a release of about 95% 6-CF at 2 h, whereas Convention Lip only released about 13% 6-CF. In addition, the average concentrations of sPLA<sub>2</sub> in the cell-conditioned medium (CCM) of Colo205 cancer cells increased with incubation time and L-OHP loaded GA-PC Lip had much greater anti-proliferative activity than Convention Lip against Colo205 cells. These findings suggest that GA-PC Lip is an ideal complex for sPLA2-triggered release and has potential applications in enzyme-triggered smart anti-cancer drug release system to increase the anti-cancer effect.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"1-9"},"PeriodicalIF":3.6,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143052805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of sodium hyaluronate coated liposomes: effect of polymer molecular weight, coating concentration, amount of charged lipids and type of hydration medium on the stability.
IF 3.6 4区 医学
Journal of Liposome Research Pub Date : 2025-01-25 DOI: 10.1080/08982104.2025.2456194
Joseph Azumah, Danijela Vasilic, Gro Smistad, Marianne Hiorth
{"title":"Preparation of sodium hyaluronate coated liposomes: effect of polymer molecular weight, coating concentration, amount of charged lipids and type of hydration medium on the stability.","authors":"Joseph Azumah, Danijela Vasilic, Gro Smistad, Marianne Hiorth","doi":"10.1080/08982104.2025.2456194","DOIUrl":"10.1080/08982104.2025.2456194","url":null,"abstract":"<p><p>In this study, liposomes consisting of soybean phosphatidyl choline (SoyPC) and different molar concentrations (10 mol% and 20 mol%) of dioleoyl trimethylammoniumpropane (DOTAP) were prepared by the thin film hydration method and coated with sodium hyaluronate (NaHA) of different MWs (8-15 kDa, 30-50 kDa and 90-130 kDa) and concentrations (0.01-0.2% w/w) using phosphate buffer (PB) or glycerol phosphate buffer (G-PB) as the hydration medium. These NaHA coated liposomes could have a potential in the treatment of dry mouth since glycerol and NaHA are known for their lubricating and hydrating properties. The liposomes composed of SoyPC-DOTAP 20 mol%, and coated with NaHA MW 90-130 kDa, 0.05% w/w were found to be most stable during storage. The liposomes with 20 mol% DOTAP coated with NaHA MW 30-50 kDa, 0.05% w/w showed promising results as these stayed stable for at least two weeks. However, the liposomes coated with NaHA MW 8-15 kDa were generally unstable irrespective of the combinations of the investigated parameters. When the stable liposomes were introduced into artificial saliva (AS), aggregation rapidly occurred. Sodium alginate (NaAlg) coated liposomes that were prepared for comparison were found to be stable in AS. The study has demonstrated the influence of the amount of charged lipid which must be high, the polymer MW which must lay in the area 30 kDa-130 kDa and coating concentration which should be intermediate 0.05% w/w in preparing stable NaHA coated liposomes. Further studies need to be conducted to understand the instability exhibited by the NaHA coated liposomes in AS.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"1-14"},"PeriodicalIF":3.6,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143039609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cytoprotective effects of liposomal ganglioside GM1. 脂质体神经节苷脂GM1的细胞保护作用。
IF 3.6 4区 医学
Journal of Liposome Research Pub Date : 2025-01-19 DOI: 10.1080/08982104.2025.2451776
Volkmar Weissig, Medha D Joshi, Raymond Q Migrino
{"title":"Cytoprotective effects of liposomal ganglioside GM1.","authors":"Volkmar Weissig, Medha D Joshi, Raymond Q Migrino","doi":"10.1080/08982104.2025.2451776","DOIUrl":"https://doi.org/10.1080/08982104.2025.2451776","url":null,"abstract":"<p><p>Gangliosides, glycosphingolipids with one or more N-acetyl-neuraminic acid groups, play essential roles in various cellular and biological processes, among them are cell signaling, neuronal development, cell-cell recognition and the modulation of immune response. Based on their multiple biological roles, the pharmacological utilization of gangliosides for the therapy of several clinical conditions is currently widely being explored but hampered by its limited water solubility. To increase the bioavailability of poorly water-soluble therapeutic agents, pharmaceutical nanocarriers such as liposomes have been developed over the last fifty years. Ganglioside GM1 incorporated into liposomes was proposed during the 1980s for rendering them long-circulating following their intravenous administration, but GM1 was soon replaced by polyethylene glycol which gave rise to the concept of Stealth Liposomes. More recently, the ability of exogenous GM1 to ameliorate oxidative stress was revealed, leading us to investigate the cytoprotective effect of liposomal GM1 under a variety of pathological conditions. Here we review all data showing the antioxidant effect of exogeneous GM1 and based on literature findings and our own, we propose a mechanism by which liposomal exogenous GM1 is able to trigger the Nrf2 (Nuclear factor erythroid 2-related factor 2) pathway, which is a critical cellular defense mechanism protecting against oxidative stress and other types of cellular damage.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"1-6"},"PeriodicalIF":3.6,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143006750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The future of lactoferrin: A closer look at LipoDuo technology. 乳铁蛋白的未来:LipoDuo技术的进一步研究。
IF 3.6 4区 医学
Journal of Liposome Research Pub Date : 2025-01-12 DOI: 10.1080/08982104.2025.2451235
K N Prasad, Chaithra C, Yalpi Karthik, G V Girish, Sandhya A
{"title":"The future of lactoferrin: A closer look at LipoDuo technology.","authors":"K N Prasad, Chaithra C, Yalpi Karthik, G V Girish, Sandhya A","doi":"10.1080/08982104.2025.2451235","DOIUrl":"https://doi.org/10.1080/08982104.2025.2451235","url":null,"abstract":"<p><strong>Background: </strong>Lactoferrin (Lf), a multifunctional glycoprotein known for its roles in immune modulation, iron metabolism, and antimicrobial activity, has limited therapeutic efficacy due to poor bioavailability. Liposomal encapsulation of lactoferrin (LLf) offers a potential solution by improving its stability, absorption, and sustained release, making it a promising candidate for various clinical applications. This study aims to compare the effectiveness of LLf and plain Lf in cellular uptake, proliferation, and wound healing using HEK-293T and Caco-2 cell lines.</p><p><strong>Methods: </strong>Cell uptake, proliferation, and wound healing assays were conducted using HEK-293T and Caco-2 cells to evaluate the bioavailability and therapeutic efficacy of LLf compared to plain Lf. The cellular uptake was assessed over a 24-h period using an indirect ELISA method. Cell proliferation was measured using the MTT assay, while wound healing was evaluated using a scratch assay to observe cell migration over 48 h.</p><p><strong>Results: </strong>LLf demonstrated significantly higher cellular uptake in both HEK-293T and Caco-2 cells, with peak internalization at 4 h, compared to plain Lf. In proliferation studies, LLf showed a dose-dependent increase in cell growth, achieving a 71% proliferation rate at 75 µg/mL, while plain Lf reached only 53%. LLf also accelerated wound healing, with nearly complete closure by 48 h, compared to 51.3% closure with plain Lf.</p><p><strong>Conclusion: </strong>The results indicate that liposomal encapsulation significantly enhances lactoferrin's bioavailability, proliferation-inducing capacity, and wound healing efficacy. LLf's superior performance in these key areas suggests its potential for broader therapeutic applications, particularly in wound care, immune modulation, and tissue regeneration. Future clinical studies are warranted to validate the therapeutic benefits of LLf <i>in vivo</i>.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"1-6"},"PeriodicalIF":3.6,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142971222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信