{"title":"Cytoprotective effects of liposomal ganglioside GM1.","authors":"Volkmar Weissig, Medha D Joshi, Raymond Q Migrino","doi":"10.1080/08982104.2025.2451776","DOIUrl":"10.1080/08982104.2025.2451776","url":null,"abstract":"<p><p>Gangliosides, glycosphingolipids with one or more N-acetyl-neuraminic acid groups, play essential roles in various cellular and biological processes, among them are cell signaling, neuronal development, cell-cell recognition and the modulation of immune response. Based on their multiple biological roles, the pharmacological utilization of gangliosides for the therapy of several clinical conditions is currently widely being explored but hampered by its limited water solubility. To increase the bioavailability of poorly water-soluble therapeutic agents, pharmaceutical nanocarriers such as liposomes have been developed over the last fifty years. Ganglioside GM1 incorporated into liposomes was proposed during the 1980s for rendering them long-circulating following their intravenous administration, but GM1 was soon replaced by polyethylene glycol which gave rise to the concept of Stealth Liposomes. More recently, the ability of exogenous GM1 to ameliorate oxidative stress was revealed, leading us to investigate the cytoprotective effect of liposomal GM1 under a variety of pathological conditions. Here we review all data showing the antioxidant effect of exogeneous GM1 and based on literature findings and our own, we propose a mechanism by which liposomal exogenous GM1 is able to trigger the Nrf2 (Nuclear factor erythroid 2-related factor 2) pathway, which is a critical cellular defense mechanism protecting against oxidative stress and other types of cellular damage.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"212-217"},"PeriodicalIF":3.6,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143006750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Responsiveness of glycyrrhetinic acid modified liposome toward secretory phospholipase A<sub>2</sub> and its growth inhibitory in Colo205 cells.","authors":"Zhicheng Su, Yanjiao Liu","doi":"10.1080/08982104.2025.2457465","DOIUrl":"10.1080/08982104.2025.2457465","url":null,"abstract":"<p><p>This study aimed to design a novel liposome containing GA modified phosphatidylcholine lipid (GA-PC Lip) and determine its susceptibility to tumor over-expressed secretory phospholipase A<sub>2</sub> (sPLA<sub>2</sub>) and its anti-cancer effect compared to conventional liposomes (Convention Lip). The liposomes were characterized for size, drug loading, encapsulation efficiency, and stability. A 6-CF release assay was conducted to assess the sensitivity of the liposomes to the tumor-overexpressed secretory phospholipase A<sub>2</sub> (sPLA<sub>2</sub>). <i>In vitro</i> experiment, the sPLA<sub>2</sub> levels in the Colo205 cell culture medium were detected by the Elisa kit and the anti-cancer effect of the oxaliplatin (L-OHP) loaded GA-PA Lip was analyzed by the CCK-8 assay. Results showed that both of L-OHP loaded formulations (GA-PC Lip and Convention Lip) had similar particle sizes of ∼100 nm and close entrapment efficiency values of 4.5-4.8%. The results of CF release assay indicated that the labeled GA-PC Lip had released more quickly than CF labeled Convention Lip in the presence of Bv sPLA<sub>2</sub> and GA-PC Lip had a release of about 95% 6-CF at 2 h, whereas Convention Lip only released about 13% 6-CF. In addition, the average concentrations of sPLA<sub>2</sub> in the cell-conditioned medium (CCM) of Colo205 cancer cells increased with incubation time and L-OHP loaded GA-PC Lip had much greater anti-proliferative activity than Convention Lip against Colo205 cells. These findings suggest that GA-PC Lip is an ideal complex for sPLA2-triggered release and has potential applications in enzyme-triggered smart anti-cancer drug release system to increase the anti-cancer effect.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"188-196"},"PeriodicalIF":3.6,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143052805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anna-Maria Gaber, Maria Tsakiri, Hector Katifelis, Maria Gazouli, Costas Demetzos
{"title":"Preparation, physicochemical evaluation and <i>in vitro</i> toxicity studies of HSPC and HSPC:DMPC stigmasterol-loaded liposomes.","authors":"Anna-Maria Gaber, Maria Tsakiri, Hector Katifelis, Maria Gazouli, Costas Demetzos","doi":"10.1080/08982104.2025.2502928","DOIUrl":"https://doi.org/10.1080/08982104.2025.2502928","url":null,"abstract":"<p><p>Phytosterols, like stigmasterol, have been studied for their antioxidant, immunomodulatory, and anticancer properties. However, their lipophilic nature and biological instability make it challenging to incorporate them in food supplements and medicinal products. Liposomes offer many benefits in sterols' entrapment and delivery them due to their high bioavailability, low toxicity, and ability to target specific tissues. The purpose of this study was to develop stigmasterol-loaded liposomes using HSPC (Hydrogenated Soy Phosphatidylcholine) and HSPC:DMPC (Dimyristoylphosphatidylcholine). The impact of increasing stigmasterol concentrations on the physicochemical stability of the liposomal formulations was analyzed by dynamic light scattering. The results showed that HSPC-based liposomes could incorporate higher amounts of stigmasterol compared to the HSPC:DMPC-based liposomes. Further analysis through differential scanning calorimetry revealed the formation of metastable phases in HSPC:DMPC:stigmasterol lipid bilayers. Finally, an <i>in vitro</i> MTS assay on HEK-293 cells demonstrated the low toxicity of the stigmasterol-loaded nanoplatforms. In conclusion, stigmasterol, not only contributed to the stability of liposomal formulation but exhibited low cell toxicity on HEK-293 line and could be used as a valuable compound in liposomal drug delivery formulation.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"1-12"},"PeriodicalIF":3.6,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144159514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"TRA/MEL immunoliposomes act as a targeted medicine in BT-474 breast cancer cells.","authors":"Sajjad Hamze Mostafavi, Sahar Mohammadi, Fahimeh Sadat Mousavi Alborzi, Fahimeh Hajiahmadi, Davoud Ahmadvand, Nematollah Gheibi, Hossein Naderi-Manesh, Hanifeh Shariatifar, Alireza Farasat","doi":"10.1080/08982104.2025.2505102","DOIUrl":"https://doi.org/10.1080/08982104.2025.2505102","url":null,"abstract":"<p><p>Breast cancer is one of the most common and deadly cancers worldwide. Melittin is the main component of bee venom, which has multiple anti-cancer properties. Targeted delivery of the gene encoding melittin using TRA-conjugated immunoliposomes to breast cancer cells can effectively treat this disease and reduce the side effects. Liposomes were prepared using the thin-film hydration method. The conjugation of TRA to liposomes was confirmed using SDS-PAGE, FTIR, and Bradford assay and characterized by DLS and TEM. The MTT, Fluorescent microscopy imaging, and flow cytometry methods were chosen to investigate the cytotoxicity and internalization of MEL/PEG-Lip and TRA/MEL immunoliposomes in the BT-474 cell line. The hydrodynamic diameter of TRA/MEL immunoliposomes was about 156 nm, and their appearance was spherical. The IC<sub>50</sub> values for TRA/MEL immunoliposomes were calculated as 7.73 and 5.41 µg/mL for 48 and 72 h, respectively, which indicated that TRA/MEL immunoliposomes had a more significant cytotoxic effect on BT-474 cells than MEL/PEG-Lip. In addition, flow cytometry results showed that TRA/MEL immunoliposomes enter BT-474 cells to a greater extent and cause apoptosis. Due to the ability of TRA/MEL immunoliposomes to target and induce apoptosis in BT-474 cancer cells, this nanostructure can be suggested as a promising alternative in the treatment of this type of breast cancer.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"1-11"},"PeriodicalIF":3.6,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144110927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kanza Rahali, Atabak Ghanizadeh Tabriz, Dennis Douroumis
{"title":"Quality by design (QbD) liposomes engineering using 3D printed Tesla microfluidic arrays.","authors":"Kanza Rahali, Atabak Ghanizadeh Tabriz, Dennis Douroumis","doi":"10.1080/08982104.2025.2504018","DOIUrl":"https://doi.org/10.1080/08982104.2025.2504018","url":null,"abstract":"<p><p>Microfluidic arrays have been successfully implemented for the design and development of liposome nanoparticles. In this study we have applied a Quality by Design (QbD) approach to investigate the effect of 3D printed Tesla microfluidic designs (direct and serpentine shape) on the liposome nanoparticles in comparison with conventional ultrasonication methodology. Critical processing parameters (CPP) such as the shape, length and channel width of the Tesla arrays were also studied. Furthermore, the effect of critical material attributes (CMA), including the length of the phosphatidylcholine (PC) carbon chain and the lipid:cholesterol ratio on the produced nanoparticles was investigated. The obtained findings revealed that both CPP and CMA play a key role in the formation of liposome nanoparticles. The liposome size was decreasing with a descending order for plain array > Tesla <sub>(serpentine)</sub> > Tesla <sub>(direct)</sub> > ultrasonication. However, improved Tesla arrays with narrow channel width (200 μm) produced the smallest liposome particle size (74 nm). The PC carbon chain length was critical for the obtained particle size where Lipoid S75 produced smaller nanoparticles when compared to Lipoid E80. The increase of cholesterol content resulted in liposome size reduction and decreased zeta-potential.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"1-13"},"PeriodicalIF":3.6,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144110924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Protease encapsulated liposomes for twin benefits: a green approach to unhairing and soft leather production.","authors":"Bruntha Arunachalam, Aruna Dhathathreyan, Thanikaivelan Palanisamy","doi":"10.1080/08982104.2025.2504019","DOIUrl":"https://doi.org/10.1080/08982104.2025.2504019","url":null,"abstract":"<p><p>Rising ecological concerns are driving industries, including leather manufacturing, to adopt more sustainable practices. A major focus is transitioning from traditional chemical-based methods to bio-based alternatives. Enzyme-based unhairing has emerged as a potential replacement for the conventional lime-sulfide process. However, it faces challenges such as poor enzyme stability under harsh processing conditions, high cost, and possible grain damage resulting from uncontrolled enzymatic activity. Herein, we propose using egg-derived L-α-phosphatidylcholine (EPC) liposomes as protective carriers to encapsulate protease, aiming to improve its stability and efficacy during the unhairing process. Protease-loaded EPC liposomes (EPC+Pro) were synthesized and characterized for their size, zeta potential, thermal behavior, and morphology. The average size of EPC+Pro liposomes was 386 ± 10 nm with a zeta potential of -46 ± 0.1 mV. When applied to goat skin, EPC+Pro liposomes enabled complete (100%) hair removal within 3 h, while the unhairing process using free protease required 5 h to achieve comparable results. Beyond ensuring quick and efficient hair removal, EPC+Pro demonstrated a dual function by acting as a natural fatliquor, markedly enhancing the softness of leather with low fatliquor consumption. The treated leather showed a softness of 5.13 ± 0.2 mm, higher than the 4.26 ± 0.3 mm observed with free protease treatment. Overall, EPC+Pro treated leather demonstrated superior physical properties. This study highlights the potential of protease-encapsulated liposomes as a dual-functional, efficient, and sustainable solution for enzymatic unhairing, offering improved process efficiency, enhanced leather quality, and reduced chemical usage for commercial leather processing.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"1-12"},"PeriodicalIF":3.6,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144094111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yoshiyuki Hattori, Mizuki Shinkawa, Aya Kurihara, Ryohei Shimizu
{"title":"Optimization of PEGylation for cationic triacyl lipid-based siRNA lipoplexes prepared using the modified ethanol injection method for tumor therapy.","authors":"Yoshiyuki Hattori, Mizuki Shinkawa, Aya Kurihara, Ryohei Shimizu","doi":"10.1080/08982104.2025.2498956","DOIUrl":"https://doi.org/10.1080/08982104.2025.2498956","url":null,"abstract":"<p><p>We previously developed a modified ethanol injection (MEI) method to construct small interfering RNA (siRNA) lipoplexes by mixing a lipid-ethanol solution with an siRNA-containing phosphate-buffered saline solution. Here, we constructed siRNA lipoplexes with 11-((1,3-bis(dodecanoyloxy)-2-((dodecanoyloxy)methyl)propan-2-yl)amino)-<i>N</i>,<i>N</i>,<i>N</i>-trimethyl-11-oxoundecan-1-aminium bromide (TC-1-12), 1,2-dioleoyl-<i>sn</i>-glycero-3-phosphoethanolamine, and poly(ethylene glycol) (PEG)-lipid using our MEI method. The siRNA lipoplexes were PEGylated with 1, 3, 5, and 10 mol% PEG cholesteryl ether (PEG-Chol), 1,2-dimyristoyl-<i>rac</i>-glycero-3-methoxypolyethylene glycol (mPEG-DMG), or 1,2-distearoyl-<i>sn</i>-glycero-3-phosphoethanolamine-<i>N</i>-(methoxy[polyethylene glycol]) (mPEG-DSPE). PEGylation of siRNA lipoplexes with PEG-Chol did not attenuate the inhibitory effects of Luc and polo-like kinase 1 (PLK1) siRNA lipoplexes on the luciferase (Luc) activity and proliferation of human cervical carcinoma HeLa-Luc, human ovarian cancer SK-OV-3-Luc, and human breast cancer MCF-7-Luc cells stably expressing Luc. In contrast, PEGylated lipoplexes with 10 mol% mPEG-DMG inhibited Luc activity by Luc siRNA but considerably attenuated the PLK1 siRNA-mediated cytotoxic effects. For PEGylated siRNA lipoplexes with mPEG-DSPE, inhibitory effect of Luc siRNA on Luc activity decreased with increasing amounts of PEG modification, and PLK1 siRNA-mediated cytotoxic effects disappeared at more than 3 mol% PEGylation. Erythrocyte aggregation and hemolysis induction by the siRNA lipoplexes were effectively inhibited by 10 mol% PEGylation, irrespective of the PEG-lipid. Compared to those with 1 mol% PEG-Chol, PEGylated siRNA lipoplexes with 10 mol% PEG-Chol potently reduced siRNA accumulation in mouse lungs post-intravenous administration. Overall, TC-1-12-based siRNA lipoplexes with 10 mol% PEG-Chol exerted PLK1 siRNA-mediated cytotoxic effects, without inducing hemolysis and erythrocyte aggregation.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"1-12"},"PeriodicalIF":3.6,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144000046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Platelet-derived extracellular vesicles: emerging players in hemostasis and thrombosis.","authors":"Aziz Kubaev, Fadhil Faez Sead, Mohammad Pirouzbakht, Mobina Nazari, Hanieh Riyahi, Omolbanin Sargazi Aval, Alireza Hasanvand, Forough Mousavi, Hamed Soleimani Samarkhazan","doi":"10.1080/08982104.2025.2495261","DOIUrl":"https://doi.org/10.1080/08982104.2025.2495261","url":null,"abstract":"<p><p>Platelets, long recognized for their role in hemostasis and thrombosis, have emerged as key players in a wide array of physiological and pathological processes through the release of platelet-derived extracellular vesicles (PEVs). These nanoscale vesicles, rich in bioactive molecules such as proteins, lipids, and nucleic acids, facilitate intercellular communication and influence processes ranging from angiogenesis and inflammation to immune modulation and tissue repair. PEVs, the most abundant extracellular vesicles in circulation, display procoagulant activity 50-100 times greater than activated platelets, underscoring their pivotal role in hemostasis and thrombosis. Recent research has unveiled their dual role in health and disease, highlighting their potential as diagnostic biomarkers and therapeutic vehicles. PEVs are implicated in cancer progression, autoimmune diseases, and infectious diseases, where they modulate tumor microenvironments, immune responses, and inflammatory pathways. Moreover, their ability to deliver therapeutic agents with high specificity and biocompatibility positions them as promising tools in regenerative medicine, drug delivery, and targeted therapies. This review comprehensively explores PEV biogenesis, cargo composition, and their multifaceted roles in hemostasis and thrombosis, as well as their broader implications in disease. It also explores the potential of PEVs as diagnostic markers and innovative therapeutic strategies, offering insights into their application in treating thrombotic disorders, cancer, and inflammatory diseases. Despite significant advancements, challenges remain in standardizing isolation protocols and translating preclinical findings into clinical applications. Unlocking the full potential of PEVs promises to revolutionize diagnostics and therapeutics, paving the way for novel approaches to managing complex diseases.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"1-11"},"PeriodicalIF":3.6,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144021467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Redox-responsive liposomes aimed at nitroreductase for contents release.","authors":"Brajadulal Ghosh, Robin L McCarley","doi":"10.1080/08982104.2025.2490537","DOIUrl":"https://doi.org/10.1080/08982104.2025.2490537","url":null,"abstract":"<p><p>Here, we report a novel stimuli-responsive N-DOPE liposome where the redox-active 4-nitrobenzyl formate head group of liposomes would respond with respect to the presence of nitroreductase present in the environment of tumor tissues to release the payload. Our main emphasis is related to the construction of redox-sensitive liposomes that would function as the liposomal drug carriers to malignant tumors. Our N-DOPE liposome contains a nitro group (-NO₂) in the modified lipid, and we expect the reduction of the nitro group (-NO₂) to amine (-NH₂) would release the calcein (drug) through the 1,6 elimination as per our hypothesis. But we found no release after waiting for almost 20 hours with the use of Na₂S₂O₄, nitroreductase (NTR) and changes of different external environmental conditions, <i>i.e.</i> temperature, aerobic and anaerobic, etc. due to the formation of an azo (R-N = N-R) bond that stops the complete reduction of (-NO<sub>2</sub>) all the way down to form amine (-NH<sub>2</sub>) to stop releasing the payloads. However, adding an organic group containing nitro during the reduction process with the Na₂S₂O₄ resulted in a 45% release of liposomal content. A detailed study & explanation of the formation of azo bond in our N-DOPE liposome has been shown in a stepwise manner in through various spectroscopic methods, and we have discussed future directions.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"1-10"},"PeriodicalIF":3.6,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144064083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}