Melatonin hyalurosomes as a powerful antioxidant for combating skin damage induced by UV radiation.

IF 3.6 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Mariam Zewail, Haidy Abbas, Merhan E Ali, Shaimaa Makled
{"title":"Melatonin hyalurosomes as a powerful antioxidant for combating skin damage induced by UV radiation.","authors":"Mariam Zewail, Haidy Abbas, Merhan E Ali, Shaimaa Makled","doi":"10.1080/08982104.2025.2484732","DOIUrl":null,"url":null,"abstract":"<p><p>Extrinsic skin aging is caused by chronic skin photodamage. The present study aims to inspect the role of nanoencapsulation of melatonin (MEL) in hyalurosomes in combating UVB-induced skin damage to take advantage of the hydrating penetration enhancing and antiaging effects of hyaluronic acid along with the powerful antioxidant effects of MEL. Measurement of particle size, zeta potential, encapsulation efficiency and <i>in vitro</i> MEL release were carried out. The <i>in vivo</i> photoprotective effects of MEL were tested in rats. A histopathological examination was conducted, and antioxidant and anti-inflammatory markers were measured along with estimating the expression of P38 MAPK, P-ERK and P-JNK. Particle size and zeta potential of MEL hyalurosomes were 285.9 nm and -26.3 mV with 95% entrapment efficiency and provided a sustained release profile for 48h. <i>In vivo,</i> results revealed the superior effect of MEL hyalurosomes in protecting skin against UVB-induced damage and reducing the levels of inflammatory mediators like TNF-α and IL6 compared with MEL suspension. However, they had a prominent role in increasing the levels of antioxidants. These findings may be accredited to the effect of nanoencapsulation in enhancing skin penetration and deposition of MEL besides the effect of hyaluronic acid as a powerful antiaging tool.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"1-16"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Liposome Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08982104.2025.2484732","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Extrinsic skin aging is caused by chronic skin photodamage. The present study aims to inspect the role of nanoencapsulation of melatonin (MEL) in hyalurosomes in combating UVB-induced skin damage to take advantage of the hydrating penetration enhancing and antiaging effects of hyaluronic acid along with the powerful antioxidant effects of MEL. Measurement of particle size, zeta potential, encapsulation efficiency and in vitro MEL release were carried out. The in vivo photoprotective effects of MEL were tested in rats. A histopathological examination was conducted, and antioxidant and anti-inflammatory markers were measured along with estimating the expression of P38 MAPK, P-ERK and P-JNK. Particle size and zeta potential of MEL hyalurosomes were 285.9 nm and -26.3 mV with 95% entrapment efficiency and provided a sustained release profile for 48h. In vivo, results revealed the superior effect of MEL hyalurosomes in protecting skin against UVB-induced damage and reducing the levels of inflammatory mediators like TNF-α and IL6 compared with MEL suspension. However, they had a prominent role in increasing the levels of antioxidants. These findings may be accredited to the effect of nanoencapsulation in enhancing skin penetration and deposition of MEL besides the effect of hyaluronic acid as a powerful antiaging tool.

褪黑素透明质体是一种强大的抗氧化剂,可以对抗紫外线辐射引起的皮肤损伤。
外源性皮肤老化是由慢性皮肤光损伤引起的。本研究旨在利用透明质酸的增强透水渗透和抗衰老作用以及其强大的抗氧化作用,探讨在透明质体中纳米胶囊化褪黑素(MEL)在对抗uvb诱导的皮肤损伤中的作用。测定其粒径、zeta电位、包封率和MEL体外释放量。在大鼠体内测试了MEL的光保护作用。进行组织病理学检查,测定抗氧化和抗炎标志物,并估计P38 MAPK、P-ERK和P-JNK的表达。MEL透明质体粒径为285.9 nm, zeta电位为-26.3 mV,包封率为95%,缓释时间为48h。体内实验结果显示,与MEL悬浮液相比,MEL透明质体在保护皮肤免受uvb诱导的损伤和降低炎症介质如TNF-α和il - 6水平方面具有优越的作用。然而,它们在增加抗氧化剂水平方面发挥了重要作用。这些发现可能与纳米胶囊除了透明质酸作为一种强大的抗衰老工具外,还可以增强MEL的皮肤渗透和沉积作用有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Liposome Research
Journal of Liposome Research 生物-生化与分子生物学
CiteScore
10.50
自引率
2.30%
发文量
24
审稿时长
3 months
期刊介绍: The Journal of Liposome Research aims to publish original, high-quality, peer-reviewed research on the topic of liposomes and related systems, lipid-based delivery systems, lipid biology, and both synthetic and physical lipid chemistry. Reviews and commentaries or editorials are generally solicited and are editorially reviewed. The Journal also publishes abstracts and conference proceedings including those from the International Liposome Society. The scope of the Journal includes: Formulation and characterisation of systems Formulation engineering of systems Synthetic and physical lipid chemistry Lipid Biology Biomembranes Vaccines Emerging technologies and systems related to liposomes and vesicle type systems Developmental methodologies and new analytical techniques pertaining to the general area Pharmacokinetics, pharmacodynamics and biodistribution of systems Clinical applications. The Journal also publishes Special Issues focusing on particular topics and themes within the general scope of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信