Journal of Magnesium and Alloys最新文献

筛选
英文 中文
The influence of heat-treatment on regulating the content and morphology of LPSO phase in Mg-Y-Al alloy and its strengthening mechanism at room temperature
IF 17.6 1区 材料科学
Journal of Magnesium and Alloys Pub Date : 2025-03-27 DOI: 10.1016/j.jma.2025.02.020
Qianlong Ren, Jie Mi, Jinhui Wang, Shengquan Liang, Yunzhao Feng
{"title":"The influence of heat-treatment on regulating the content and morphology of LPSO phase in Mg-Y-Al alloy and its strengthening mechanism at room temperature","authors":"Qianlong Ren, Jie Mi, Jinhui Wang, Shengquan Liang, Yunzhao Feng","doi":"10.1016/j.jma.2025.02.020","DOIUrl":"https://doi.org/10.1016/j.jma.2025.02.020","url":null,"abstract":"The LPSO phase can effectively enhance the mechanical properties of Mg alloys. To investigate the impact of different LPSO phase contents and morphologies on the mechanical properties and strengthening mechanisms of Mg-Y-Al alloys under room temperature deformation, this study prepared Mg-12Y-1Al (WA121) alloys containing Bulk-LPSO (B-LPSO), Lattice-LPSO (L-LPSO), and Needle-like LPSO (N-LPSO) with different contents through different heat-treatment processes. The results indicate that with the increase in heat treatment time, the contents of B-LPSO phases remain essentially unchanged, and the contents of L-LPSO and N-LPSO phases gradually increase. The increase in N-LPSO phase content is the most pronounced, with the highest content (7.29%) observed in the alloy treated for 4.5 h. Moreover, the alloy treated for 4.5 h exhibits the best mechanical properties, with ultimate tensile strength (UTS), tensile yield strength (TYS), and elongation (EL) values of 177 MPa, 139 MPa, and 4.27%, respectively. Compared to the as-cast alloy, UTS, TYS, and EL increased by 9.94%, 11.2%, and 27.1%, respectively. The study reveals that all three LPSO phases exhibit excellent dislocation hindering effects, effectively enhancing strength of the alloy. Additionally, the N-LPSO phase, due to its dense distribution, forms numerous dislocation channels within the grains, dispersing stress concentration within the grains to improve plasticity of the alloy. Furthermore, the interaction between the N-LPSO phase and the other phases in the alloy can also enhance plasticity of the alloy. Therefore, the alloy treated for 4.5 h demonstrates a synergistic improvement in strength and plasticity. Research has revealed that the precipitation mechanism of the N-LPSO phase in the as-cast WA121 alloy involves the formation of an Al-rich region adjacent to the needle-like Mg<sub>24</sub>Y<sub>5</sub> phase. Subsequently, the Y element provided by the dissolving Mg<sub>24</sub>Y<sub>5</sub> phase reacts with this region, ultimately leading to the formation of the needle-like LPSO phase.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"72 1","pages":""},"PeriodicalIF":17.6,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143713137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morphology transition engineering on MgO for enhanced dye adsorption without using surfactants as sacrifice templates
IF 17.6 1区 材料科学
Journal of Magnesium and Alloys Pub Date : 2025-03-26 DOI: 10.1016/j.jma.2025.02.019
Jie Xu, Jiajun Xu, Shiai Xu, Rujie Li, Beibei Sun, Zhongbiao Wang, Jiaxu Cheng, Kesong Chai, Chao Zhang
{"title":"Morphology transition engineering on MgO for enhanced dye adsorption without using surfactants as sacrifice templates","authors":"Jie Xu, Jiajun Xu, Shiai Xu, Rujie Li, Beibei Sun, Zhongbiao Wang, Jiaxu Cheng, Kesong Chai, Chao Zhang","doi":"10.1016/j.jma.2025.02.019","DOIUrl":"https://doi.org/10.1016/j.jma.2025.02.019","url":null,"abstract":"Hierarchical porous MgO is a promising adsorbent for dye removal because of its large Brunauer–Emmett–Teller specific surface area (<em>S</em><sub>BET</sub>) and abundant low-coordinated oxygen anions (LCO) sites. As hierarchical porous MgO particles with large <em>S</em><sub>BET</sub> values are typically prepared by complicated procedures under harsh conditions, such as high temperatures and high pressures, their large-scale production is impractical. Consequently, the preparation of hierarchical porous MgO with a large <em>S</em><sub>BET</sub> value under mild conditions is highly desirable. In this study, a morphology transition engineering strategy is introduced to change the morphology of simple MgO microspheres to an embroidered ball-shaped with a larger <em>S</em><sub>BET</sub> value via hydrolysis and calcination without using surfactants as sacrificial templates. During hydrolysis, numerous Mg(OH)<sub>2</sub> sheets form and attach to the MgO surface, thus increasing the <em>S</em><sub>BET</sub> value of the newly obtained MgO that forms by calcination (denoted as NM-<em>x</em>, where <em>x</em> is the hydrolysis time in hours). The sizes of the crystalline sheets were tuned by controlling the hydrolysis time. NM-12 exhibited the highest density of small-sized sheets on its surface and the largest <em>S</em><sub>BET</sub> value of 180.17 m<sup>2</sup> g<sup>−1</sup>, which was 3.51 times that of the MgO precursor (51.89 m<sup>2</sup> g<sup>−1</sup>). However, NM-24 (134.07 m<sup>2</sup> g<sup>−1</sup>) had a higher adsorption efficiency for Congo red (CR) than NM-12, despite having a smaller <em>S</em><sub>BET</sub> value, which indicates that other factors are involved. NM-24 exhibited a lower probability of exposed (200) and (220) facets which were verified to repulse CR molecules by molecular dynamics simulations, and a greater number of LCO sites, which contributed to adsorption. Thus, this study introduces a facile method for preparing hierarchical porous MgO and examines the effects of LCO sites and exposed facet probabilities on its adsorption properties.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"29 1","pages":""},"PeriodicalIF":17.6,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143713198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in LDHs for corrosion-resistant protection of Mg and Al alloys: A review
IF 17.6 1区 材料科学
Journal of Magnesium and Alloys Pub Date : 2025-03-18 DOI: 10.1016/j.jma.2025.01.021
Lin Wang, Fen Zhang, Zuo-Jun Jiao, Lan-Yue Cui, Yuan-Ding Huang, Shuo-Qi Li, Cheng-Bao Liu, Rong-Chang Zeng
{"title":"Advances in LDHs for corrosion-resistant protection of Mg and Al alloys: A review","authors":"Lin Wang, Fen Zhang, Zuo-Jun Jiao, Lan-Yue Cui, Yuan-Ding Huang, Shuo-Qi Li, Cheng-Bao Liu, Rong-Chang Zeng","doi":"10.1016/j.jma.2025.01.021","DOIUrl":"https://doi.org/10.1016/j.jma.2025.01.021","url":null,"abstract":"Layered double hydroxides (LDHs) as coatings attract much attention in corrosion and protection of light metals due to their interesting properties such as in-situ synthesis, unique layer-stacking structure, tunable composition, and good biocompatibility as well. Currently, single LDH coating faces challenges such as time-consumed synthesis, thin coating thickness and inadequate density. This paper provides a systematic review of the cutting-edge advancements in modulation of composition, synthesis and applications of LDHs on Mg and Al alloys in corrosion protection and biomedical fields. The focus is concentrated on the intercalation of corrosion inhibitors into LDH coatings. Particularly the anti-corrosion mechanisms of both inorganic anions (nitrate, vanadate, and molybdate) and organic anion intercalation (carboxylic acid anions and hydroxyquinolines) were discussed within the context of corrosion inhibitor intercalation LDH. The modification of LDHs is introduced with low surface energy substances such as silanes and fatty acids. The formation mechanism of LDH films and the active anti-corrosion mechanisms were proposed. A comparison of LDH coatings between Mg alloy and Al alloy was carried out from different perspectives, and further researches on LDH corrosion protection were prospected.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"25 1","pages":""},"PeriodicalIF":17.6,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143653580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent developments in coatings on biodegradable Mg alloys: A review
IF 17.6 1区 材料科学
Journal of Magnesium and Alloys Pub Date : 2025-03-12 DOI: 10.1016/j.jma.2025.01.027
Jie Yang, Zhihan Zhang, Wenhui Yao, Yulong Wu, Yuyang Gao, Yan Yang, Liang Wu, Maria Serdechnova, Carsten Blawert, Fusheng Pan
{"title":"Recent developments in coatings on biodegradable Mg alloys: A review","authors":"Jie Yang, Zhihan Zhang, Wenhui Yao, Yulong Wu, Yuyang Gao, Yan Yang, Liang Wu, Maria Serdechnova, Carsten Blawert, Fusheng Pan","doi":"10.1016/j.jma.2025.01.027","DOIUrl":"https://doi.org/10.1016/j.jma.2025.01.027","url":null,"abstract":"Mg and its alloys show high potential to be applied as implant materials due to their superior properties like biodegradability, bioactivity, biocompatibility, and suitable mechanical behaviors. Nevertheless, the fast and uncontrolled degradation of Mg alloys in biological environment severely restricts their wide applications as biomedical materials. In comparison with alloying, surface coatings can not only improve corrosion resistance but also impart other bio-functional properties to achieve diverse clinical requirements. This review analyzes and summarizes the most recent developments in popular coating technologies, including micro-arc oxidation, electrophoretic deposition, chemical conversion, anodic oxidation, layered double hydroxide, and sol-gel coatings. Considering inevitable damages under complex service conditions, smart self-healing coatings are also introduced in each coating technology. The existing issues and future perspectives are finally discussed to facilitate applications of Mg alloys as biomedical materials in the medical industry.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"24 1","pages":""},"PeriodicalIF":17.6,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143608517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in magnesium-based bioresorbable cardiovascular stents: Surface engineering and clinical prospects
IF 17.6 1区 材料科学
Journal of Magnesium and Alloys Pub Date : 2025-03-11 DOI: 10.1016/j.jma.2025.01.025
Ganesh Kumar, Subham Preetam, Arunima Pandey, Nick Birbilis, Saad Al-Saadi, Pooria Pasbakhsh, Mikhail Zheludkevich, Poovarasi Balan
{"title":"Advances in magnesium-based bioresorbable cardiovascular stents: Surface engineering and clinical prospects","authors":"Ganesh Kumar, Subham Preetam, Arunima Pandey, Nick Birbilis, Saad Al-Saadi, Pooria Pasbakhsh, Mikhail Zheludkevich, Poovarasi Balan","doi":"10.1016/j.jma.2025.01.025","DOIUrl":"https://doi.org/10.1016/j.jma.2025.01.025","url":null,"abstract":"Magnesium (Mg)-based bioresorbable stents represent a potentially groundbreaking advancement in cardiovascular therapy; offering temporary vessel support and complete biodegradability—addressing limitations of traditional stents like in-stent restenosis and long-term complications. However, challenges such as rapid corrosion and suboptimal endothelialisation have hindered their clinical adoption. This review highlights the latest breakthroughs in surface modification, alloying, and coating strategies to enhance the mechanical integrity, corrosion resistance, and biocompatibility of Mg-based stents. Key surface engineering techniques, including polymer and bioactive coatings, are examined for their role in promoting endothelial healing and minimising inflammatory responses. Future directions are proposed, focusing on personalised stent designs to optimize efficacy and long-term outcomes, positioning Mg-based stents as a transformative solution in interventional cardiology.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"27 1","pages":""},"PeriodicalIF":17.6,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143589995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D forming space and abnormal lamellar microstructures in a Mg-10Gd-Zr alloy fabricated by laser powder bed fusion
IF 17.6 1区 材料科学
Journal of Magnesium and Alloys Pub Date : 2025-03-10 DOI: 10.1016/j.jma.2025.02.005
Ziyi Liu, Qingchen Deng, Ziyan Li, Yiwen Ding, Jing Luo, Hong Liu, Liming Peng
{"title":"3D forming space and abnormal lamellar microstructures in a Mg-10Gd-Zr alloy fabricated by laser powder bed fusion","authors":"Ziyi Liu, Qingchen Deng, Ziyan Li, Yiwen Ding, Jing Luo, Hong Liu, Liming Peng","doi":"10.1016/j.jma.2025.02.005","DOIUrl":"https://doi.org/10.1016/j.jma.2025.02.005","url":null,"abstract":"Mg-10Gd-Zr (G10K, wt. %) is a commonly used high-performance magnesium-rare earth alloy that has demonstrated good suitability for additive manufacturing processes. However, the formability and microstructures need to be further explored for its engineering application. This study presents a systematic and in-depth investigation of the defects, microstructural characteristics, and mechanical properties of G10K alloy fabricated by laser powder bed fusion (LPBF) as a function of processing parameters. A 3D forming space for LPBF-G10K alloy is constructed by adopting laser beam diameter as the third variant other than laser power and scanning speed. With a laser beam diameter of 120 µm, the fluctuation of the melt pool is minimized, leading to the suppression of gas porosities and balling defects, and thus the expansion of forming zone of the alloy as compared to laser beam diameters of 100 or 140 µm. LPBF-G10K alloy under the optimal processing parameter consists of a heterogeneous microstructure of coarse and fine grains. The formation of abnormal lamellar structures in the coarse grains at the middle of melt pools is attributed to the planar growth along laser scanning direction. The lamellar coarse grains provide strength in the alloy due to texture-strengthening effect, while plastic deformation is primarily accommodated by equiaxed grains. These findings are instrumental for application and future modification of the LPBF-G10K alloy.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"19 1","pages":""},"PeriodicalIF":17.6,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143582863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spark plasma sintering of a novel Mg-0.7Ca alloy: A comprehensive study
IF 17.6 1区 材料科学
Journal of Magnesium and Alloys Pub Date : 2025-03-07 DOI: 10.1016/j.jma.2025.02.004
Parisa Golmohammadi, Behzad Nayebi, Ahmad Bahmani, Nader Parvin, Woo Jin Kim
{"title":"Spark plasma sintering of a novel Mg-0.7Ca alloy: A comprehensive study","authors":"Parisa Golmohammadi, Behzad Nayebi, Ahmad Bahmani, Nader Parvin, Woo Jin Kim","doi":"10.1016/j.jma.2025.02.004","DOIUrl":"https://doi.org/10.1016/j.jma.2025.02.004","url":null,"abstract":"Light-weight Mg-based alloys have gained attention owing to their various applications in engineering and biomedical fields. Recent advancements in modern powder metallurgy techniques, such as spark plasma technique (SPS), have enabled achieving near-net-shape products with tailored properties and decreased in-process oxidation. However, improving their mechanical and physical properties require further enhancement. In this study, a novel Mg-0.7Ca alloy was produced using SPS process. The effects of process parameters such as sintering time and additive type on the microstructural evolutions, phase arrangements, and mechanical and physical properties of the consolidated materials were investigated through various characterization techniques. Full-dense samples were produced from 60-minute ball-milled powder mixtures through spark plasma sintering at 420 °C for 7, 10, and 13 min under 38 MPa of externally applied pressure. The obtained samples were then characterized using Field Emission Scanning Electron Microscopy (FESEM), Electron Backscatter Diffraction (EBSD), X-ray Energy Dispersive Spectroscopy (EDS), and X-ray Diffraction (XRD) analysis methods, as well as mechanical tests including compression strength and micro-hardness measurements. The results indicated that while improved densification behavior is observed in paraffin-contained samples, relatively better compression properties are achieved in starch-contained alloys. It is also found that the phase arrangement of the starch-contained samples includes higher fractions of the secondary phases such as oxides and residual carbons, which can positively affect the mechanical strength, despite decreased hardness. The microstructural characterizations showed an intensified thermomechanical response of the materials in both groups via increased sintering time. However, the competition between the influencing parameters causes scattered strengthening behavior and texture in the consolidated samples. Detailed discussions about the densification behavior, texture, and obtained characteristics were also included.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"17 1","pages":""},"PeriodicalIF":17.6,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143569582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing the formability of flame-retardant magnesium alloy through Zn alloying
IF 17.6 1区 材料科学
Journal of Magnesium and Alloys Pub Date : 2025-03-07 DOI: 10.1016/j.jma.2024.11.001
Xizao Wang, Ce Zheng, Tianjiao Luo, Tianyu Liu, Qiuyan Huang, Yingju Li, Yuansheng Yang
{"title":"Enhancing the formability of flame-retardant magnesium alloy through Zn alloying","authors":"Xizao Wang, Ce Zheng, Tianjiao Luo, Tianyu Liu, Qiuyan Huang, Yingju Li, Yuansheng Yang","doi":"10.1016/j.jma.2024.11.001","DOIUrl":"https://doi.org/10.1016/j.jma.2024.11.001","url":null,"abstract":"Poor formability is a key problem that limits the application of flame-retardant Mg-Al-Ca based alloys at room temperature. In this study, we present a new Mg-6Al-3Ca-0.4Mn-2Zn (wt%) alloy which exhibits excellent flame-retardant performance and excellent formability. Due to the high Ca content, the Mg-6Al-3Ca-0.4Mn-2Zn (wt%) alloy does not burn at 1065 °C. The formability of the alloys is measured using a three-point bending test, and the Mg-6Al-3Ca-0.4Mn-2Zn (wt%) alloy shows excellent formability, with a significant increase in bending displacement from 7.1 mm to 23.8 mm compared to the Mg-6Al-3Ca-0.4Mn (wt%) alloy. The combined effect of the weakened basal texture, the reduction of twins and the plastically deformable Al<sub>2</sub>Ca phase particles ensures good formability of the Mg-6Al-3Ca-0.4Mn-2Zn (wt%) alloy. The dynamic recrystallization mechanisms of the alloys have been analyzed, and the promotion of dynamic recrystallization by the PSN mechanism is responsible for the weakened basal texture and the reduction of twins in the Mg-6Al-3Ca-0.4Mn-2Zn (wt%) alloy. The new Mg alloy is attractive for industrial applications due to its excellent flame-retardant performance and formability.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"26 7 Suppl 1","pages":""},"PeriodicalIF":17.6,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143570287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding pyramidal slip-induced deformation bands and dynamic recrystallization in AZWX3100 magnesium alloy
IF 17.6 1区 材料科学
Journal of Magnesium and Alloys Pub Date : 2025-03-06 DOI: 10.1016/j.jma.2025.02.013
Risheng Pei, Fatim-Zahra Mouhib, Mattis Seehaus, Simon Arnoldi, Pei-Ling Sun, Talal Al-Samman
{"title":"Understanding pyramidal slip-induced deformation bands and dynamic recrystallization in AZWX3100 magnesium alloy","authors":"Risheng Pei, Fatim-Zahra Mouhib, Mattis Seehaus, Simon Arnoldi, Pei-Ling Sun, Talal Al-Samman","doi":"10.1016/j.jma.2025.02.013","DOIUrl":"https://doi.org/10.1016/j.jma.2025.02.013","url":null,"abstract":"Dynamic recrystallization (DRX) in inhomogeneous deformation zones, such as grain boundaries, shear bands, and deformation bands, is critical for texture modification in magnesium alloys during deformation at elevated temperatures. This study investigates the DRX mechanisms in AZWX3100 magnesium alloy under plane strain compression at 200 °C. Microstructural analysis revealed necklace-type DRX accompanied by evidence of local grain boundary bulging. Additionally, ribbons of recrystallized grains were observed within fine deformation bands, aligned with theoretical pyramidal I and II slip traces derived from the matrix. The distribution of local misorientation within the deformed microstructure demonstrated a clear association between deformation bands and localized strain. Dislocation analysis of lamellar specimens extracted from two pyramidal slip bands revealed 〈<em>c</em> + <em>a〉</em> dislocations, indicating a connection between 〈<em>c</em> + <em>a〉</em> slip activation and the formation of deformation bands. Crystal plasticity simulations suggest that the orientation of deformation bands is responsible for the unique recrystallization texture of the DRX grains within these bands. The texture characteristics imply a progressive, glide-induced DRX mechanism. A fundamental understanding of the role of deformation bands in texture modification can facilitate future alloy and process design.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"91 1","pages":""},"PeriodicalIF":17.6,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143560942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnesium-reinforced sandwich structured composite membranes promote osteogenesis
IF 17.6 1区 材料科学
Journal of Magnesium and Alloys Pub Date : 2025-03-06 DOI: 10.1016/j.jma.2025.02.008
Feilong Wang, Yunjiao He, Dong Xiang, Xuenan Liu, Fan Yang, Yulin Hou, Weiliang Wu, Dandan Xia, Yongxiang Xu, Yunsong Liu
{"title":"Magnesium-reinforced sandwich structured composite membranes promote osteogenesis","authors":"Feilong Wang, Yunjiao He, Dong Xiang, Xuenan Liu, Fan Yang, Yulin Hou, Weiliang Wu, Dandan Xia, Yongxiang Xu, Yunsong Liu","doi":"10.1016/j.jma.2025.02.008","DOIUrl":"https://doi.org/10.1016/j.jma.2025.02.008","url":null,"abstract":"Guided bone regeneration (GBR) membranes are extensively utilized in dental implantation. However, the existing GBR membranes showed insufficient space-maintaining capability and poor bone promoting ability, affecting the effectiveness of clinical bone augmentation, which in turn resulted in poor implant outcomes and even failure. In this study, we designed a novel magnesium reinforced sandwich structured composite membrane, consisting of an inner magnesium scaffold and a PLGA/collagen hybrid (mixture of poly(lactic-co-glycolic acid) and collagen) top and bottom layer. The magnesium scaffold provided mechanical support and released Mg<sup>2+</sup> to enhance osteogenesis. The PLGA/collagen hybrid regulated membrane degradation and improved biocompatibility, promoting cell adhesion and proliferation (<em>P</em> &lt; 0.05). The PLGA/collagen hybrid regulated the release of magnesium ions, such that the MgP10C (mass ratios of PLGA and collagen =100:10) group showed the best in vitro osteogenic effect. Further mechanism exploration confirmed that MgP10C membranes significantly enhanced bone defect repair via the MAPK/ERK 1/2 pathway by the Mg<sup>2+</sup> released from the composite membranes. In rat calvarial defect and rabbit alveolar defect model (<em>P</em> &lt; 0.05), the in vivo osteogenic effect of the MgP10C group was superior to that of other groups. Finite element analysis models validated the support effect of composite membranes, demonstrating lower stress and a significant reduction in strain on the bone graft in the MgP10C group. In conclusion, the magnesium-reinforced sandwich structure composite membrane, with its space-maintaining properties and osteoinductive activity, represents a new strategy for GBR and enhancing osteogenic potential that meets directly clinical needs.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"284 1","pages":""},"PeriodicalIF":17.6,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143560724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信