{"title":"Significant improvement of Jc and flux pinning force of MgB2 by doping NTE-ZrW2O8 particles","authors":"Tianqi Weng, Lingkai Yuan, Chuan Ke, Cui Hua Cheng, Yong Zhao","doi":"10.1016/j.jma.2025.02.029","DOIUrl":"https://doi.org/10.1016/j.jma.2025.02.029","url":null,"abstract":"Although introducing second phase particles as additional pinning centers is an effective method to improve the current carrying capacity of MgB<sub>2</sub>, the thermal strain caused by second phase particles in MgB<sub>2</sub> and their impact on flux pinning have not received much attention. In this paper, flux pinning behavior of the thermal strain induced by the second phase particles in the MgB<sub>2</sub> bulk materials was studied by doping ZrW<sub>2</sub>O<sub>8</sub> particles which have negative thermal expansion (NTE) characteristics. Due to the significant difference in thermal expansion characters between ZrW<sub>2</sub>O<sub>8</sub> and MgB<sub>2</sub>, drastic thermal strain was induced in the lattice of MgB<sub>2</sub> by doping the NTE-ZrW<sub>2</sub>O<sub>8</sub> particles. These strains work as additional flux pinning centers and significantly enhance the irreversibility field, <em>H</em><sub>irr</sub>, and critical current density, <em>J</em><sub>c</sub>, of the MgB<sub>2</sub>. Taking <em>J</em><sub>c</sub> as an example, at 4.2 K and 5 T, its <em>J</em><sub>c</sub> value reaches 4.1 × 10<sup>4</sup> A/cm<sup>2</sup>, which is a 105 % performance improvement compared to the 2.0 × 10<sup>4</sup> A/cm<sup>2</sup> of the pure MgB<sub>2</sub> sample W-0; at 20 K and 2 T, its <em>J</em><sub>c</sub> also reaches 1.3 × 10<sup>5</sup> A/cm<sup>2</sup>, which is 1.78 times of the 7.3 × 10<sup>4</sup> A/cm<sup>2</sup> for the pure MgB<sub>2</sub> sample under the same conditions. It is interesting that doping ZrW<sub>2</sub>O<sub>8</sub> does not significantly change the scaling behavior of the pinning force, indicating that the lattice strain work like surficial pinning center, while the point defect pinning center initiated by ZrW<sub>2</sub>O<sub>8</sub> particles themselves may only contribute to the high field region, causing the peak in the pinning force scaling curve to shift towards higher fields.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"8 1","pages":""},"PeriodicalIF":17.6,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143766436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring the degradation behavior of biodegradable metals (Mg, Zn, and Fe) in human duodenal fluid","authors":"Yue Zhang, Jian Cao, Huan Liu, Cheng Wang, Chenglin Chu, Feng Xue, Regine Willumeit-Römer, Norbert Hort, Yuanding Huang, Jing Bai","doi":"10.1016/j.jma.2025.02.034","DOIUrl":"https://doi.org/10.1016/j.jma.2025.02.034","url":null,"abstract":"Biodegradable metals have been of great interest in making gastrointestinal implants these years. The most researched biodegradable metal is magnesium (Mg), followed by zinc (Zn) and iron (Fe). However, due to the limitations of in vivo experiments and the complex component of the gastrointestinal fluid, their degradation mechanisms in such an environment are still ambiguous. In this work, the human duodenal fluid (HDF) was used to investigate their in vitro degradation behaviors, with a simulated duodenal fluid (SDF) prepared for the control group based on the HDF ionic composition. After immersion of these metals for 7 days, it is found that HDF shows a stronger pH buffering effect than SDF due to the presence of organics. These organics can also hinder the degradation of metals by affecting their product formation in different ways. On the one hand, the adsorption of organics and their effects on the fluid dominate their degradation inhibition effect on Mg and Zn in HDF. On the other hand, they can hinder the further oxidation of the degradation products of Fe, which is the main mechanism resulting in a lower degradation rate of Fe in HDF rather than in SDF. Among the three metals, Mg unsurprisingly shows the highest degradation rate in both fluids. Interestingly, Zn is nearly immune to degradation in HDF, while it presents typical pitting corrosion in SDF. Compared to their degradation rates in popular pseudo-humoral media (e. g. Hanks’ Balanced Salt Solutions, Dulbecco's modified Eagle's medium) reported previously, Mg degrades faster, and Zn and Fe more slowly in HDF. The higher <em>in vitro</em> degradation rate of Fe than that of Zn is influenced by oxygen and ions in the degradation environment.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"8 1","pages":""},"PeriodicalIF":17.6,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143766490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bofei Wang, Zhen Wu, Honghao Liu, Fusheng Yang, Zaoxiao Zhang, Jing Yao, Qian Li, Hujun Cao, Bo Li
{"title":"Low-energy and accelerated hydrogen release from MgH2–5 wt% NaTiOxH catalyzed hydrogen storage reactor by graphite responsive microwave","authors":"Bofei Wang, Zhen Wu, Honghao Liu, Fusheng Yang, Zaoxiao Zhang, Jing Yao, Qian Li, Hujun Cao, Bo Li","doi":"10.1016/j.jma.2025.03.002","DOIUrl":"https://doi.org/10.1016/j.jma.2025.03.002","url":null,"abstract":"Owing to high thermal stability and large reaction enthalpy, MgH<sub>2</sub> has high reaction temperatures and sluggish reaction kinetics in the dehydrogenation process, which consumes lots of energy. To achieve hydrogen release with low energy consumption, accelerated reaction rate, and high heating uniformity, this paper proposes a novel method of graphite responsive microwave-assisted thermal management with NaTiO<em><sub>x</sub></em>H catalyst. A multi-physics model of the 5 wt% NaTiO<em><sub>x</sub></em>H catalyzed MgH<sub>2</sub> reactor integrated with a microwave generator is developed to investigate the reaction, heat and mass transfer process of hydrogen release. It is found that the graphite responsive microwave heating method could improve the temperature uniformity of reaction bed, reduce the energy consumption by at least 10.71% and save the hydrogen release time by 53.49% compared with the traditional electric heating method. Moreover, the hydrogen desorption thermodynamics could be improved with the increase of microwave power. The hydrogen release time is shortened by 19.55% with the increase of 20 W microwave power. Meanwhile, it is also concluded that the microwave excitation frequency of 2.1 GHz and the graphite content of 2 wt% have better heating performance. Therefore, it can be verified that the graphite responsive microwave heating helps to low-energy and accelerated hydrogen release from MgH<sub>2</sub> hydrogen storage reactor.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"75 1","pages":""},"PeriodicalIF":17.6,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143758162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiang Liu, Feng Li, Fu Wei Kang, Hai Bo Wang, Shun Luo
{"title":"Structure-activity relationship on tensile properties under DRX and slip system activity of U-CVCDEed AZ31 magnesium alloy","authors":"Qiang Liu, Feng Li, Fu Wei Kang, Hai Bo Wang, Shun Luo","doi":"10.1016/j.jma.2025.03.010","DOIUrl":"https://doi.org/10.1016/j.jma.2025.03.010","url":null,"abstract":"Given the limitations of traditional hot extrusion methods in improving the microstructure and mechanical properties of magnesium(Mg) alloys, this paper attempts to treat AZ31 Mg alloy billet by pre-upsetting continuous variable cross-section direct extrusion (U-CVCDE). The effects of dynamic recrystallization behavior and slip system activity on texture evolution and mechanical properties of CVCDE Mg alloys with different pre-upsetting amounts were systematically analyzed. The results indicate that the introduction of the pre-upsetting process promotes dynamic recrystallization during the CVCDE process. The recrystallization proportion shows a trend of first rising and then decreasing with the increase of the pre-upsetting amount. Among them, the proportion of recrystallization grains in the U2-CVCDE-formed structural parts is as high as 88.3 %. The average grain sizes of U1-CVCDE, U2-CVCDE, and U3-CVCDE were 6.01 µm, 4.90 µm, and 10.45 µm, respectively. In addition, following U-CVCDE, the pyramidal slip of each forming component consistently maintains a high level of activation and opening and dominates, making more grains deflect in the axial extrusion direction of C to varying degrees, which is conducive to the uniform distribution of stress in more grains during plastic deformation. The synergistic effect of dynamic recrystallization behavior and the high activity of the pyramidal slip system significantly weakened the (0001) basal texture strength, and the maximum basal texture strength showed a gradually decreasing trend, among which the base surface texture strength of U3-CVCDE formed parts was only 9.9. The U-CVCDE process is employed to achieve deep modification of Mg alloy, and excellent comprehensive mechanical properties are obtained; among them, the yield and tensile strength of U2-CVCDE are as high as 243.4 MPa and 317.5 MPa, respectively, and the elongation after breaking is up to 21.3 %. This study introduces a practical new idea for investigating the extrusion forming technology of high-performance Mg alloys.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"25 1","pages":""},"PeriodicalIF":17.6,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143758163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tahsin Özer, Murat Çanlı, Nihat Arıkan, Ali İhsan Öztürk
{"title":"First-principles calculations to investigate the structural, elastic and thermodynamic properties of full-Heusler MgXY2(X = Zn, Cd, Y = Ag, Au, Cu) compounds","authors":"Tahsin Özer, Murat Çanlı, Nihat Arıkan, Ali İhsan Öztürk","doi":"10.1016/j.jma.2025.03.012","DOIUrl":"https://doi.org/10.1016/j.jma.2025.03.012","url":null,"abstract":"Magnesium and its compounds are recognized as favorable materials for structural uses, primarily due to their lightweight nature and remarkable specific strength. This research employed first-principles methodologies to investigate how pressure affects the crystal structure along with the elastic and thermodynamic characteristics of MgXY<sub>2</sub> (<em>X</em>=Zn, Cd, and <em>Y</em>= Ag, Au, Cu) compounds. All analyses were implemented via the Perdew-Burke-Ernzerhof variant of the Generalized Gradient Approximation alongside a plane-wave ultrasoft pseudopotential approach. The findings on the elastic constants indicated that these MgXY<sub>2</sub> compounds have maintained their stability at pressures up to 500 kBar. These constants informed detailed assessments of properties like elastic modulus, Poisson's ratio, Vickers hardness, and material anisotropy. The Quantum Espresso software was utilized to calculate melting points, Debye temperature, and minimum thermal conductivity values. A temperature range spanning from 0 to 800 K allowed for an evaluation of vibrational energy, free energy, entropy, and specific heat capacity metrics. The anticipated physical attributes suggest significant potential for these magnesium compounds in biomedical fields.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"62 1","pages":""},"PeriodicalIF":17.6,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143766437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fang Chai, Jianqiang Feng, Xinghui Han, Wuhao Zhuang, Yizhe Chen, Zhili Hu, Xuan Hu, Fangyan Zheng, Lin Hua
{"title":"Microstructure and mechanical properties of ZK61 magnesium alloy thin-walled cylindrical component processed by two-step forging","authors":"Fang Chai, Jianqiang Feng, Xinghui Han, Wuhao Zhuang, Yizhe Chen, Zhili Hu, Xuan Hu, Fangyan Zheng, Lin Hua","doi":"10.1016/j.jma.2025.02.033","DOIUrl":"https://doi.org/10.1016/j.jma.2025.02.033","url":null,"abstract":"Magnesium alloy thin-walled cylindrical components with the advantages of high specific stiffness and strength present broad prospect for the lightweight of aerospace components. However, poor formability resulting from the hexagonal close-packed crystal structure in magnesium alloy puts forwards a great challenge for thin-walled cylindrical components fabrication, especially for extreme structure with the thickness-changing web and the high thin-wall. In this research, an ZK61 magnesium alloy thin-walled cylindrical component was successfully fabricated by two-step forging, i.e., the pre-forging and final-forging is mainly used for wed and thin-wall formation, respectively. Microstructure and mechanical properties at the core, middle and margin of the web and the thin-wall of the pre-forged and final-forged components are studied in detail. Due to the large strain-effectiveness and metal flow along the radial direction (RD), the grains of the web are all elongated along RD for the pre-forged component, where an increasingly elongated trend is found from the core to the margin of the wed. A relatively low recrystallized degree occurs during pre-forging, and the web at different positions are all with prismatic and pyramid textures. During final-forging, the microstructures of the web and the thin-wall are almost equiaxed due to the remarkable occurrence of dynamic recrystallization. Similarity, except for few basal texture of the thin-wall, only prismatic and pyramid textures are found for the final-forged component. Compared with the initial billet, an obviously improved mechanical isotropy is achieved during pre-forging, which is well-maintained during final-forging.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"1 1","pages":""},"PeriodicalIF":17.6,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143766438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Boqiao Ren, Chao Chen, Bin Yang, Yihao Gao, Xinchen Sui, Yan Fu, Ziwei Li, Xiaohui Zhao
{"title":"Exploring the impact of multiple parameter combinations with constant heat input on weld integrity of Mg alloy welded joints prepared by cold metal transfer technology","authors":"Boqiao Ren, Chao Chen, Bin Yang, Yihao Gao, Xinchen Sui, Yan Fu, Ziwei Li, Xiaohui Zhao","doi":"10.1016/j.jma.2025.03.011","DOIUrl":"https://doi.org/10.1016/j.jma.2025.03.011","url":null,"abstract":"Reasonably controlling heat input is crucial for optimizing the weld quality of Mg alloys with thermal sensitivity. But it falls to meet diverse requirements of industrial welded structures. This study synchronously adjusts welding current, voltage and speed with constant heat input to achieve further regulation on weld quality of Mg alloy thin plate welded joints. Increasing three parameters significantly expanded melting width and area, with a lower heat-affected zone under full penetration. And equiaxed grains gradually replaced columnar grains at the fusion line. More precipitate phases formed in the weld zone at the same time, inducing a greater hardness. Moreover, higher arc energy promoted recrystallization, weakening the crystallographic texture and internal stress of welded joints. Especially at a wire feed rate of 7 m/min, the subgrain boundary content and kernel average misorientation were far lower than other joints. Although these evolutions had minimal impacts on tensile strength, elongation and yield strength exhibited a fluctuating state that initially decrease then raise. A superior tensile behavior was achieved at a wire feed rate of 6 m/min. The findings highlight significant impacts of varying welding parameters on weld quality under constant heat input, offering new insights for optimizing Mg alloy welding to meet diverse structural needs.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"19 1","pages":""},"PeriodicalIF":17.6,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143745197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kun Sheng, Shaokang Guan, Yufeng Sun, Yoshiaki Morisada, Hidetoshi Fujii
{"title":"Research on strength-ductility and fracture behavior of ultra-fine bio-magnesium alloys via double-sided friction stir processing using liquid CO2 cooling","authors":"Kun Sheng, Shaokang Guan, Yufeng Sun, Yoshiaki Morisada, Hidetoshi Fujii","doi":"10.1016/j.jma.2025.02.018","DOIUrl":"https://doi.org/10.1016/j.jma.2025.02.018","url":null,"abstract":"Bio-magnesium (Mg) alloys exhibit excellent biocompatibility and biodegradability, making them highly promising for implant applications. However, their limited strength-ductility balance remains a critical challenge restricting widespread use. In this study, ultra-fine-grained and homogeneous Mg alloys were fabricated using double-sided friction stir processing (DS-FSP) with liquid CO₂ rapid cooling, leading to a significant enhancement in the strength-ductility synergy of the stirred zone. The results demonstrate that DS-FSP samples exhibit simultaneous improvements in ultimate tensile strength (UTS) and elongation, reaching 334.1 ± 15 MPa and 28.2 ± 7.3 %, respectively. Compared to the non-uniform fine-grained microstructure obtained through single-sided friction stir processing, DS-FSP generates a uniform ultra-fine-grained structure, fundamentally altering the fracture behavior and mechanisms of Mg alloys. The DS-FSP samples exhibit irregular fracture patterns due to variations in basal slip system activation among different grains. In contrast, single-sided friction stir processing samples, characterized by a fine-grained yet heterogeneous microstructure, display flat shear fractures dominated by high-density dislocation initiation induced by twin formation, with fracture propagation dictated by the non-uniform texture. By achieving an ultra-fine grain size and homogeneous texture, DS-FSP effectively modifies the fracture mechanisms, thereby enhancing the strength-ductility balance of bio-magnesium alloys.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"23 1","pages":""},"PeriodicalIF":17.6,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143745198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synergistic deformation of bimodal-structured AZ80 Mg alloy for excellent strength-ductility synergy via regulating the heterogeneity level","authors":"Guofeng Liu, Runxia Li, Biao Wang, Zhenmin Wang, Hongfei Zhang","doi":"10.1016/j.jma.2025.03.006","DOIUrl":"https://doi.org/10.1016/j.jma.2025.03.006","url":null,"abstract":"The trade-off between strength and ductility has long been a challenge for Mg alloy. To address this issue, bimodal-structured AZ80 Mg alloys with varying heterogeneity levels were fabricated via low-temperature extrusion in this work. The results reveal the microstructure comprising second-phase particle (SP<sub>p</sub>, <em>β-</em>Mg<sub>17</sub>Al<sub>12</sub> and Mg<sub>3</sub>Mn<sub>2</sub>Al<sub>18</sub>)-reinforced fine grains (FGs) FGs and SP<sub>p</sub>-free coarse grains (CGs), with the heterogeneity level decreasing as extrusion temperature increases. As the heterogeneity level decreases, the synergistic deformation capacity initially improves, reaching a maximum at the moderate heterogeneity level of 0.31 GPa and 0.238, and then declines. This exceptional capacity is attributed to the hetero-deformation induced (HDI) stress, which effectively alleviates the strain gradients by activating 〈<em>c</em> + <em>a</em>〉 dislocations and non-basal 〈<em>a</em>〉 dislocations during deformation. An optimal combination of 287 MPa in yield strength, 393 MPa in ultimate tensile strength, and 14.96 % in elongation is achieved in the alloy with a moderate heterogeneity level. The excellent strength-ductility synergy originates from the enhanced capacity of dislocations accumulation driven by remarkable capacity of synergistic deformation and the synergistic strengthening mechanisms. This work provides a new insight into the design of bimodal structure to produce high-performance Mg alloys.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"225 1","pages":""},"PeriodicalIF":17.6,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143745204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mingyu Fan, Ye Cui, Xin Zhou, Junming Chen, Yang Zhang, Lixin Sun, Jamieson Brechtl, Daqing Fang, Qian Li, Qingqing Ding, Hongbin Bei, Peter K. Liaw, Yanzhuo Xue, Xun-Li Wang, Yang Lu, Zhongwu Zhang
{"title":"Enhancing strength at elevated temperatures via dynamic high-density mobile dislocations in Mg alloys","authors":"Mingyu Fan, Ye Cui, Xin Zhou, Junming Chen, Yang Zhang, Lixin Sun, Jamieson Brechtl, Daqing Fang, Qian Li, Qingqing Ding, Hongbin Bei, Peter K. Liaw, Yanzhuo Xue, Xun-Li Wang, Yang Lu, Zhongwu Zhang","doi":"10.1016/j.jma.2025.03.004","DOIUrl":"https://doi.org/10.1016/j.jma.2025.03.004","url":null,"abstract":"Dislocation strengthening, as one of the methods to simultaneously enhance the room temperature strength and ductility of alloys, does not achieve the desired strengthening and plasticity effect during elevated-temperature deformation. Here, we report a novel strategy to boost the dislocation multiplication and accumulation during deformation at elevated temperatures through dynamic strain aging (DSA). With the introduction of the rare-earth element Ho in Mg-Y-Zn alloy, Ho atoms diffuse toward dislocations during deformation at elevated temperatures, provoking the DSA effect, which increases the dislocation density significantly via the interactions of mobile dislocations and Ho atoms. The resulting alloy achieves a great enhancement of dislocation hardening and obtains the dual benefits of high strength and good ductility simultaneously at high homologous temperatures. The present work provides an effective strategy to enhancing the strength and ductility for elevated-temperature materials.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"33 1","pages":""},"PeriodicalIF":17.6,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143745207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}