Journal of integrative neuroscience最新文献

筛选
英文 中文
Bridging the Gap: Translational Medicine and Novel Therapies in Neuromuscular Diseases. 弥合差距:神经肌肉疾病的转化医学和新疗法。
IF 1.8 4区 医学
Journal of integrative neuroscience Pub Date : 2024-04-30 DOI: 10.31083/j.jin2305094
Massimiliano Filosto
{"title":"Bridging the Gap: Translational Medicine and Novel Therapies in Neuromuscular Diseases.","authors":"Massimiliano Filosto","doi":"10.31083/j.jin2305094","DOIUrl":"https://doi.org/10.31083/j.jin2305094","url":null,"abstract":"","PeriodicalId":16160,"journal":{"name":"Journal of integrative neuroscience","volume":"23 5","pages":"94"},"PeriodicalIF":1.8,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141175332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photobiomodulation Therapy: A Novel Therapeutic Approach to Alzheimer's Disease Made Possible by the Evidence of a Brain-Gut Interconnection. 光生物调节疗法:光生物调节疗法:一种治疗阿尔茨海默氏症的新方法,因有证据表明大脑与肠道之间存在相互联系而成为可能。
IF 1.8 4区 医学
Journal of integrative neuroscience Pub Date : 2024-04-30 DOI: 10.31083/j.jin2305092
Guillaume Blivet, François J Roman, Benjamin Lelouvier, Céline Ribière, Jacques Touchon
{"title":"Photobiomodulation Therapy: A Novel Therapeutic Approach to Alzheimer's Disease Made Possible by the Evidence of a Brain-Gut Interconnection.","authors":"Guillaume Blivet, François J Roman, Benjamin Lelouvier, Céline Ribière, Jacques Touchon","doi":"10.31083/j.jin2305092","DOIUrl":"https://doi.org/10.31083/j.jin2305092","url":null,"abstract":"<p><p>The evidence of brain-gut interconnections in Alzheimer's disease (AD) opens novel avenues for the treatment of a pathology for which no definitive treatment exists. Gut microbiota and bacterial translocation may produce peripheral inflammation and immune modulation, contributing to brain amyloidosis, neurodegeneration, and cognitive deficits in AD. The gut microbiota can be used as a potential therapeutic target in AD. In particular, photobiomodulation (PBM) can affect the interaction between the microbiota and the immune system, providing a potential explanation for its restorative properties in AD-associated dysbiosis. PBM is a safe, non-invasive, non-ionizing, and non-thermal therapy that uses red or near-infrared light to stimulate the cytochrome <i>c</i> oxidase (CCO, complex IV), the terminal enzyme of the mitochondrial electron transport chain, resulting in adenosine triphosphate synthesis. The association of the direct application of PBM to the head with an abscopal and a systemic treatment through simultaneous application to the abdomen provides an innovative therapeutic approach to AD by targeting various components of this highly complex pathology. As a hypothesis, PBM might have a significant role in the therapeutic options available for the treatment of AD.</p>","PeriodicalId":16160,"journal":{"name":"Journal of integrative neuroscience","volume":"23 5","pages":"92"},"PeriodicalIF":1.8,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141175638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measuring Human Auditory Evoked Fields with a Flexible Multi-Channel OPM-Based MEG System. 利用基于 OPM 的灵活多通道 MEG 系统测量人类听觉诱发电场
IF 1.8 4区 医学
Journal of integrative neuroscience Pub Date : 2024-04-30 DOI: 10.31083/j.jin2305093
Xin Zhang, Yan Chang, Hui Wang, Yin Zhang, Tao Hu, Xiao-Yu Feng, Ming-Kang Zhang, Ze-Kun Yao, Chun-Qiao Chen, Jia-Yu Xu, Fang-Yue Fu, Qing-Qian Guo, Jian-Bing Zhu, Hai-Qun Xie, Xiao-Dong Yang
{"title":"Measuring Human Auditory Evoked Fields with a Flexible Multi-Channel OPM-Based MEG System.","authors":"Xin Zhang, Yan Chang, Hui Wang, Yin Zhang, Tao Hu, Xiao-Yu Feng, Ming-Kang Zhang, Ze-Kun Yao, Chun-Qiao Chen, Jia-Yu Xu, Fang-Yue Fu, Qing-Qian Guo, Jian-Bing Zhu, Hai-Qun Xie, Xiao-Dong Yang","doi":"10.31083/j.jin2305093","DOIUrl":"https://doi.org/10.31083/j.jin2305093","url":null,"abstract":"<p><strong>Background: </strong>Magnetoencephalography (MEG) is a non-invasive imaging technique for directly measuring the external magnetic field generated from synchronously activated pyramidal neurons in the brain. The optically pumped magnetometer (OPM) is known for its less expensive, non-cryogenic, movable and user-friendly custom-design provides the potential for a change in functional neuroimaging based on MEG.</p><p><strong>Methods: </strong>An array of OPMs covering the opposite sides of a subject's head is placed inside a magnetically shielded room (MSR) and responses evoked from the auditory cortices are measured.</p><p><strong>Results: </strong>High signal-to-noise ratio auditory evoked response fields (AEFs) were detected by a wearable OPM-MEG system in a MSR, for which a flexible helmet was specially designed to minimize the sensor-to-head distance, along with a set of bi-planar coils developed for background field and gradient nulling. Neuronal current sources activated in AEF experiments were localized and the auditory cortices showed the highest activities. Performance of the hybrid optically pumped magnetometer-magnetoencephalography/electroencephalography (OPM-MEG/EEG) system was also assessed.</p><p><strong>Conclusions: </strong>The multi-channel OPM-MEG system performs well in a custom built MSR equipped with bi-planar coils and detects human AEFs with a flexible helmet. Moreover, the similarities and differences of auditory evoked potentials (AEPs) and AEFs are discussed, while the operation of OPM-MEG sensors in conjunction with EEG electrodes provides an encouraging combination for the exploration of hybrid OPM-MEG/EEG systems.</p>","PeriodicalId":16160,"journal":{"name":"Journal of integrative neuroscience","volume":"23 5","pages":"93"},"PeriodicalIF":1.8,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141175533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nipah Virus Neurotropism: Insights into Blood-Brain Barrier Disruption. 尼帕病毒的神经滋生:血脑屏障破坏的启示。
IF 1.8 4区 医学
Journal of integrative neuroscience Pub Date : 2024-04-29 DOI: 10.31083/j.jin2305090
Mazen M Jamil Al-Obaidi, AbdulRahman Muthanna, Mohd Nasir Mohd Desa
{"title":"Nipah Virus Neurotropism: Insights into Blood-Brain Barrier Disruption.","authors":"Mazen M Jamil Al-Obaidi, AbdulRahman Muthanna, Mohd Nasir Mohd Desa","doi":"10.31083/j.jin2305090","DOIUrl":"https://doi.org/10.31083/j.jin2305090","url":null,"abstract":"<p><p>The genome of the Nipah virus (NiV) encodes a variety of structural proteins linked to a diverse array of symptoms, including fevers, headaches, somnolence, and respiratory impairment. In instances of heightened severity, it can also invade the central nervous system (CNS), resulting in more pronounced problems. This work investigates the effects of NiV on the blood-brain barrier (BBB), the vital physiological layer responsible for safeguarding the CNS by regulating the passage of chemicals into the brain selectively. To achieve this, the researchers (MMJAO, AM and MNMD) searched a variety of databases for relevant articles on NiV and BBB disruption, looking for evidence of work on inflammation, immune response (cytokines and chemokines), tight junctions (TJs), and basement membranes related to NiV and BBB. Based on these works, it appears that the affinity of NiV for various receptors, including Ephrin-B2 and Ephrin-B3, has seen many NiV infections begin in the respiratory epithelium, resulting in the development of acute respiratory distress syndrome. The virus then gains entry into the circulatory system, offering it the potential to invade brain endothelial cells (ECs). NiV also has the ability to infect the leukocytes and the olfactory pathway, offering it a \"Trojan horse\" strategy. When NiV causes encephalitis, the CNS generates a strong inflammatory response, which makes the blood vessels more permeable. Chemokines and cytokines all have a substantial influence on BBB disruption, and NiV also has the ability to affect TJs, leading to disturbances in the structural integrity of the BBB. The pathogen's versatility is also shown by its capacity to impact multiple organ systems, despite particular emphasis on the CNS. It is of the utmost importance to comprehend the mechanisms by which NiV impacts the integrity of the BBB, as such comprehension has the potential to inform treatment approaches for NiV and other developing viral diseases. Nevertheless, the complicated pathophysiology and molecular pathways implicated in this phenomenon have offered several difficult challenges to researchers to date, underscoring the need for sustained scientific investigation and collaboration in the ongoing battle against this powerful virus.</p>","PeriodicalId":16160,"journal":{"name":"Journal of integrative neuroscience","volume":"23 5","pages":"90"},"PeriodicalIF":1.8,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141175634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Complexity of Neuropathic Pain and Central Sensitization: Exploring Mechanisms and Therapeutic Prospects. 神经性疼痛和中枢敏化的复杂性:探索机制与治疗前景
IF 1.8 4区 医学
Journal of integrative neuroscience Pub Date : 2024-04-25 DOI: 10.31083/j.jin2305089
Yan-Chao Ma, Ze-Biao Kang, Yong-Qiang Shi, Wen-Yi Ji, Wen-Ming Zhou, Wei Nan
{"title":"The Complexity of Neuropathic Pain and Central Sensitization: Exploring Mechanisms and Therapeutic Prospects.","authors":"Yan-Chao Ma, Ze-Biao Kang, Yong-Qiang Shi, Wen-Yi Ji, Wen-Ming Zhou, Wei Nan","doi":"10.31083/j.jin2305089","DOIUrl":"https://doi.org/10.31083/j.jin2305089","url":null,"abstract":"<p><p>Neuropathic pain is a common pain syndrome, which seriously affects the quality of life of patients. The mechanism of neuropathic pain is complex. Peripheral tissue injury can trigger peripheral sensitization; however, what really plays a key role is the sensitization of the central nervous system. Central sensitization is a key factor in the perception of chronic pain. Central sensitization refers to the increased sensitivity of the central nervous system to pain treatment, which is related to the change of the functional connection mode of the neural network. The current study aims to reveal the basic molecular mechanisms of central sensitization, including the involvement of P2 purine X4 receptor and brain-derived neurotrophic factor. In terms of treatment, although there are drugs and physical therapy, the accuracy of targeting is limited and the efficacy needs to be further improved. Future therapeutic strategies may involve the development of new drugs designed to specifically inhibit the central sensitization process. This article focuses on the effector molecules involved in central sensitization, aiming to elucidate the pathogenesis of neuropathic pain and provide a basis for the development of more effective treatment models.</p>","PeriodicalId":16160,"journal":{"name":"Journal of integrative neuroscience","volume":"23 5","pages":"89"},"PeriodicalIF":1.8,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141175598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Event-related Potentials Indicate Target Processing in the Absence of Distractor Suppression during Rapid Serial Visual Presentation. 事件相关电位表明,在快速序列视觉呈现过程中,在没有干扰抑制的情况下也能进行目标处理。
IF 1.8 4区 医学
Journal of integrative neuroscience Pub Date : 2024-04-25 DOI: 10.31083/j.jin2305088
Charline Peylo, Mark Glennon, Paul Sauseng
{"title":"Event-related Potentials Indicate Target Processing in the Absence of Distractor Suppression during Rapid Serial Visual Presentation.","authors":"Charline Peylo, Mark Glennon, Paul Sauseng","doi":"10.31083/j.jin2305088","DOIUrl":"https://doi.org/10.31083/j.jin2305088","url":null,"abstract":"<p><strong>Background: </strong>In our modern world we are exposed to a steady stream of information containing important as well as irrelevant information. Therefore, our brains have to constantly select relevant over distracting items and further process the selected information. Whereas there is good evidence that even in rapid serial streams of presented information relevant targets can be actively selected, it is less clear whether and how distracting information is de-selected and suppressed in such scenarios.</p><p><strong>Methods: </strong>To address this issue we recorded electroencephalographic activity during a rapid serial visual presentation paradigm in which healthy, young human volunteers had to encode visual targets into short-term memory while salient visual distractors and neutral filler items needed to be ignored. Event-related potentials were analyzed in 3D source space and compared between stimulus types.</p><p><strong>Results: </strong>A negative wave between around 170 and 230 ms after stimulus onset resembling the N2pc component was identified that dissociated between target stimuli and distractors as well as filler items. This wave appears to reflect target selection processes. However, there was no electrophysiological signature identified that would indicate an active distractor suppression mechanism.</p><p><strong>Conclusions: </strong>The obtained results suggest that unlike in situations where target stimuli and distractors are presented simultaneously, targets can be selected without the need for active suppression of distracting information in serial presentations with a clear and regular temporal structure. It is assumed that temporal expectation supports efficient target selection by the brain.</p>","PeriodicalId":16160,"journal":{"name":"Journal of integrative neuroscience","volume":"23 5","pages":"88"},"PeriodicalIF":1.8,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141175439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neither Amphetamine nor Sub-Anesthetic Ketamine Treatment during Adolescence Impairs Devaluation in Rats Tested during Adulthood. 青春期接受苯丙胺或亚麻醉氯胺酮治疗都不会影响成年期接受测试的大鼠的贬值能力。
IF 1.8 4区 医学
Journal of integrative neuroscience Pub Date : 2024-04-18 DOI: 10.31083/j.jin2304083
Ian R Davis, Hayley Fisher, Caitlin McLean, Jackson Murray, Charles L Pickens
{"title":"Neither Amphetamine nor Sub-Anesthetic Ketamine Treatment during Adolescence Impairs Devaluation in Rats Tested during Adulthood.","authors":"Ian R Davis, Hayley Fisher, Caitlin McLean, Jackson Murray, Charles L Pickens","doi":"10.31083/j.jin2304083","DOIUrl":"https://doi.org/10.31083/j.jin2304083","url":null,"abstract":"<p><strong>Background: </strong>Much of the existing animal literature on the devaluation task suggests that prior repeated exposure to drugs of abuse during adulthood can impair goal-directed action, but the literature on human drug users is mixed. Also, the initiation of drug use often occurs during adolescence, but examinations of the effects of drug exposure during adolescence on behavior in the devaluation task are lacking.</p><p><strong>Methods: </strong>We examined whether repeated exposure during adolescence to amphetamine (3 mg/kg injections every-other day from post-natal day 27-45) or ketamine (twice daily 30 mg/kg injections from post-natal day 35-44) would impair behavior in a devaluation test when tested drug-free in adulthood. Rats were trained to press a left lever with a steady cue-light above it for one reinforcer and a right lever with a flashing cue-light above it for a different reinforcer. We tested whether any impairments in goal-directed action could be overcome by compensation between strategies by giving rats information based on lever-location and cue-lights during the test that was either congruent (allowing compensation) or incongruent (preventing compensation between strategies) with the configurations during training.</p><p><strong>Results: </strong>Our results provided no evidence for impairment of goal-directed action during adulthood after adolescent amphetamine or ketamine exposure.</p><p><strong>Conclusions: </strong>We discuss possible reasons for this discrepancy with the prior literature, including (1) the age of exposure and (2) the pattern in the previous literature that most previous demonstrations of drug exposure impairing devaluation in laboratory animals may be attributed to either drug-associated cues present in the testing environment and/or accelerated habit learning in tasks that predispose laboratory animals towards habit formation with extended training (with training procedures that should resist the formation of habits in the current experiment). However, additional research is needed to examine the effects of these factors, as well a potential role for the particular doses and washout periods to determine the cause of our finding of no devaluation impairment after drug exposure.</p>","PeriodicalId":16160,"journal":{"name":"Journal of integrative neuroscience","volume":"23 4","pages":"83"},"PeriodicalIF":1.8,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11068220/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140849868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuromyelitis Optica Spectrum Disorder in Latin America: State-of-the-Art and Current Challenges. 拉丁美洲的神经脊髓炎谱系障碍:最新技术与当前挑战》。
IF 1.8 4区 医学
Journal of integrative neuroscience Pub Date : 2024-04-07 DOI: 10.31083/j.jin2304074
Edgar Carnero Contentti, Bárbara Eizaguirre, Pablo A López, Berenice Silva, Verónica A Tkachuk, Santiago Tizio, Ricardo Alonso
{"title":"Neuromyelitis Optica Spectrum Disorder in Latin America: State-of-the-Art and Current Challenges.","authors":"Edgar Carnero Contentti, Bárbara Eizaguirre, Pablo A López, Berenice Silva, Verónica A Tkachuk, Santiago Tizio, Ricardo Alonso","doi":"10.31083/j.jin2304074","DOIUrl":"10.31083/j.jin2304074","url":null,"abstract":"<p><p>Neuromyelitis optica spectrum disorder (NMOSD) is a rare autoimmune disease of the central nervous system characterized by severe attacks of optic neuritis, myelitis, and/or area postrema. Advances in understanding the pathophysiology of NMOSD have led to improved diagnostic and therapeutic approaches. There has been a notable increase in research efforts worldwide, including in Latin America (LATAM). In recent years, LATAM has witnessed a surge in research on NMOSD, resulting in a growing body of evidence on various aspects such as epidemiology, clinical manifestations, paraclinical features (including AQP4-IgG [Aquaporin-4-immunoglobulin G] and imaging), acute and long-term treatment strategies, as well as accessibility to diagnostic tests. This narrative review aims to present the most relevant findings from different NMOSD cohorts in LATAM, providing a comprehensive overview of the current understanding of the disease in the region, while considering its unique characteristics and challenges. LATAM-focused evidence is crucial for adding valuable information to the international dataset and is therefore summarized in this review.</p>","PeriodicalId":16160,"journal":{"name":"Journal of integrative neuroscience","volume":"23 4","pages":"74"},"PeriodicalIF":1.8,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140853257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brain Mitochondria as a Therapeutic Target for Carnosic Acid. 脑线粒体是卡诺西酸的治疗靶点
IF 1.8 4区 医学
Journal of integrative neuroscience Pub Date : 2024-03-07 DOI: 10.31083/j.jin2303053
Vittoria Infantino, Ilaria Pappalardo, Anna Santarsiero, Swapnil Tripathi, Gyanendra Singh, Marcos Roberto de Oliveira
{"title":"Brain Mitochondria as a Therapeutic Target for Carnosic Acid.","authors":"Vittoria Infantino, Ilaria Pappalardo, Anna Santarsiero, Swapnil Tripathi, Gyanendra Singh, Marcos Roberto de Oliveira","doi":"10.31083/j.jin2303053","DOIUrl":"10.31083/j.jin2303053","url":null,"abstract":"<p><p>Carnosic acid (CA), a diterpene obtained mainly from <i>Rosmarinus officinalis</i> and <i>Salvia officinalis</i>, exerts antioxidant, anti-inflammatory, and anti-apoptotic effects in mammalian cells. At least in part, those benefits are associated with the ability that CA modulates mitochondrial physiology. CA attenuated bioenergetics collapse and redox impairments in the mitochondria obtained from brain cells exposed to several toxicants in both <i>in vitro</i> and <i>in vivo</i> experimental models. CA is a potent inducer of the major modulator of the redox biology in animal cells, the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which controls the expression of a myriad of genes whose products are involved with cytoprotection in different contexts. Moreover, CA upregulates signaling pathways related to the degradation of damaged mitochondria (mitophagy) and with the synthesis of these organelles (mitochondrial biogenesis). Thus, CA may be considered an agent that induces mitochondrial renewal, depending on the circumstances. In this review, we discuss about the mechanisms of action by which CA promotes mitochondrial protection in brain cells.</p>","PeriodicalId":16160,"journal":{"name":"Journal of integrative neuroscience","volume":"23 3","pages":"53"},"PeriodicalIF":1.8,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140305898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single Session Effects of Prolonged Continuous Theta Burst Stimulation Targeting Two Brain Regions on Pain Perception in Patients with Painful Diabetic Neuropathy: A Preliminary Study. 针对两个脑区的长时间连续θ脉冲刺激对糖尿病痛性神经病患者痛觉的单次影响:初步研究
IF 1.8 4区 医学
Journal of integrative neuroscience Pub Date : 2024-03-07 DOI: 10.31083/j.jin2303054
Bhushan Thakkar, Carrie L Peterson, Edmund O Acevedo
{"title":"Single Session Effects of Prolonged Continuous Theta Burst Stimulation Targeting Two Brain Regions on Pain Perception in Patients with Painful Diabetic Neuropathy: A Preliminary Study.","authors":"Bhushan Thakkar, Carrie L Peterson, Edmund O Acevedo","doi":"10.31083/j.jin2303054","DOIUrl":"10.31083/j.jin2303054","url":null,"abstract":"<p><strong>Background: </strong>Painful diabetic neuropathy (pDN) is the most common cause of neuropathic pain (NP) in the United States. Prolonged continuous theta burst stimulation (pcTBS), a form of repetitive transcranial magnetic stimulation (rTMS), is quick (1-4 minutes) and tolerable for most individuals, compared to high frequency rTMS and can modulate pain thresholds in healthy participants. However, its effects on patients with chronic pain are still unclear. The primary purpose of this preliminary study is to investigate the effects of single session pcTBS targeted at the primary motor cortex (M1) and dorsolateral prefrontal cortex (DLPFC) on a set of self-report measures of pain (SRMP) that assess the (a) sensory-discriminative; (b) affective-motivational; and (c) cognitive-evaluative aspects of pain experience.</p><p><strong>Methods: </strong>For this prospective, single-blind study, forty-two participants with pDN were randomized to receive either pcTBS targeting the M1 or the DLPFC brain regions. SRMP were completed at baseline, post pcTBS and 24h-post pcTBS. A two-way mixed model repeated measures analysis of variance (2 brain regions by 3 time points) was conducted to evaluate the effects of pcTBS stimulation at M1 and DLPFC for each subscale of each SRMP.</p><p><strong>Results: </strong>After a single session of pcTBS targeted at M1 or DLPFC in patients with pDN, statistically significant improvements from baseline to post pcTBS and baseline to 24 h-post pcTBS were observed for different SRMP subscales examining the (a) sensory-discriminative, (b) affective-motivational and (c) cognitive-evaluative components of the pain experience. At 24 h-post pcTBS, none of the participants reported any serious adverse events to the pcTBS treatment, thus demonstrating its feasibility.</p><p><strong>Conclusions: </strong>In pDN patients with NP, our study results demonstrated significant improvement in scores on self-report measures of pain (SRMP) after a single session of pcTBS targeting the M1 and DLPFC brain regions. Future studies should consider utilizing multiple sessions of pcTBS to evaluate its long-term effects on pain perception, safety and tolerability in patients with chronic pain.</p><p><strong>Clinical trial registration: </strong>This study was registered on the ClinicalTrials.gov website (NCT04988321).</p>","PeriodicalId":16160,"journal":{"name":"Journal of integrative neuroscience","volume":"23 3","pages":"54"},"PeriodicalIF":1.8,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140305902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信