Journal of Iron and Steel Research International最新文献

筛选
英文 中文
Effect of hot rolling treatment on microstructure, mechanical, and corrosion properties of Zr–Sn–Co ternary alloys 热轧处理对 Zr-Sn-Co 三元合金微观结构、机械性能和腐蚀性能的影响
IF 2.5 2区 材料科学
Journal of Iron and Steel Research International Pub Date : 2024-08-02 DOI: 10.1007/s42243-024-01287-2
Chao-qun Xia, Hong-pu Zhou, Tian-shuo Song, Shu-guang Liu, Tai Yang, Qiang Li
{"title":"Effect of hot rolling treatment on microstructure, mechanical, and corrosion properties of Zr–Sn–Co ternary alloys","authors":"Chao-qun Xia, Hong-pu Zhou, Tian-shuo Song, Shu-guang Liu, Tai Yang, Qiang Li","doi":"10.1007/s42243-024-01287-2","DOIUrl":"https://doi.org/10.1007/s42243-024-01287-2","url":null,"abstract":"<p>The microstructure, mechanical properties, and corrosion resistance of as-cast Zr–Sn–Co ternary alloys have been investigated in this experiment. The properties of as-cast Zr–1.5Sn–<i>x</i>Co (<i>x</i> = 0, 2.5, 5, 7.5, and 10 at.%) ternary alloys were investigated, and the alloy composition exhibiting the best comprehensive performance was identified. Subsequently, the chosen alloys were subjected to hot rolling treatment. The microstructure of the alloys in the rolled state was analyzed using the optical microscope, X-ray diffractometer, and scanning electron microscope. The mechanical properties of the alloys were analyzed using room temperature compression tests and microhardness tests, while the corrosion properties of the alloy were investigated through electrochemical testing. The results show that the strength of as-cast Zr–1.5Sn–Co ternary alloy increases significantly with the increase in Co content. The incorporation of Co element makes the corrosion resistance of as-cast Zr–1.5Sn–Co alloy increase significantly. The hot rolling treatment has minimal effect on enhancing the corrosion resistance of Zr–1.5Sn–2.5Co alloy. However, the mechanical properties of Zr–1.5Sn–2.5Co alloy after rolling treatment are significantly enhanced. The alloy exhibits the highest strength and hardness at a rolling temperature of 600 °C and exhibits the best plasticity at a rolling temperature of 800 °C.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of compact strip processing on segregation behavior and mechanical properties of Q&P steel 紧凑型钢带加工对 Q&P 钢偏析行为和机械性能的影响
IF 2.5 2区 材料科学
Journal of Iron and Steel Research International Pub Date : 2024-08-01 DOI: 10.1007/s42243-024-01259-6
Ming-yue Yang, Sheng-wei Wang, Shui-ze Wang, Yu-he Huang, Xin-ping Mao
{"title":"Effect of compact strip processing on segregation behavior and mechanical properties of Q&P steel","authors":"Ming-yue Yang, Sheng-wei Wang, Shui-ze Wang, Yu-he Huang, Xin-ping Mao","doi":"10.1007/s42243-024-01259-6","DOIUrl":"https://doi.org/10.1007/s42243-024-01259-6","url":null,"abstract":"<p>The microstructure and mechanical properties of the compact strip production (CSP) processed quenching and partitioning (Q&amp;P) steels were investigated through experimental methods to address the challenge of designing high-performance Q&amp;P steels. Compared with the conventional process (CP) produced samples, with slightly reduced strength, the total elongation of the CSP produced samples was increased by nearly 7%. Microstructural analysis revealed that variations in austenite stability were not the primary cause for the differences in mechanical properties between the CSP and the CP. The CSP processed Q&amp;P steel exhibited milder center segregation behavior in contrast to the CP processed Q&amp;P steel. Consequently, in the CSP processed Q&amp;P steel, a higher proportion of austenite and a lower proportion of martensite were observed at the center position, delaying the crack initiation in the central region and contributing to the enhanced ductility. The investigation into the CSP process reveals its effect on alleviation of segregation and enhancement of mechanical properties of the Q&amp;P steel.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141869751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiscale analysis of microstructure-based bending characteristics of advanced high strength dual-phase steel 基于微观结构的先进高强度双相钢弯曲特性多尺度分析
IF 2.5 2区 材料科学
Journal of Iron and Steel Research International Pub Date : 2024-07-31 DOI: 10.1007/s42243-024-01264-9
Ming-shuai Huo, Hai-bo Xie, Tao Zhang, Guan-qiao Su, Lian-jie Li, Meng-yuan Ren, Zhou Li, Jing-bao Liu, Ting Yang, Xi Zhang, Yan-bin Du, Valerie Linton, Zheng-yi Jiang
{"title":"Multiscale analysis of microstructure-based bending characteristics of advanced high strength dual-phase steel","authors":"Ming-shuai Huo, Hai-bo Xie, Tao Zhang, Guan-qiao Su, Lian-jie Li, Meng-yuan Ren, Zhou Li, Jing-bao Liu, Ting Yang, Xi Zhang, Yan-bin Du, Valerie Linton, Zheng-yi Jiang","doi":"10.1007/s42243-024-01264-9","DOIUrl":"https://doi.org/10.1007/s42243-024-01264-9","url":null,"abstract":"<p>Different stress states have a significant influence on the magnitude of the microscopic plastic strain and result in the development of the microstructure evolution. As a result, a comprehensive understanding of the different scale variation on microstructure evolution during bending deformation is essential. The advanced high strength dual-phase (DP1180) steel was investigated using multiscale microstructure-based 3D representative volume element (RVE) modelling technology with emphasis on understanding the relationship between the microstructure, localised stress–strain evolution as well as the deformation characteristics in the bending process. It is demonstrated that the localised development in bending can be more accurately described by microscopic deformation when taking into account microstructural properties. Microstructure-based 3D RVEs from each chosen bending condition generally have comparable localisation properties, whilst the magnitudes and intensities differ. In addition, the most severe localised bands are predicted to occur close to the ferrite and martensite phase boundaries where the martensite grains are close together or have a somewhat sharp edge. The numerically predicted results for the microstructure evolution, shear bands development and stress and strain distribution after 3-point bending exhibit a good agreement with the relevant experimental observations.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141873173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flow and fluctuation of molten steel under permanent magnet flow control-mold in continuous casting process 连铸过程中永磁流控制模具下的钢水流动与波动
IF 2.5 2区 材料科学
Journal of Iron and Steel Research International Pub Date : 2024-07-31 DOI: 10.1007/s42243-024-01275-6
Ze-feng Han, En-gang Wang, Ze-peng Wang, Zhong-xin Zhai
{"title":"Flow and fluctuation of molten steel under permanent magnet flow control-mold in continuous casting process","authors":"Ze-feng Han, En-gang Wang, Ze-peng Wang, Zhong-xin Zhai","doi":"10.1007/s42243-024-01275-6","DOIUrl":"https://doi.org/10.1007/s42243-024-01275-6","url":null,"abstract":"<p>A new flow control technology in continuous casting process named permanent magnet flow control-mold (PMFC-Mold) was proposed, in which the permanent magnets are arranged in Halbach array near the narrow region of the mold. The behavior of molten steel flow and the fluctuation of molten steel/slag interface in the PMFC-Mold under different continuous casting speeds were investigated. Firstly, a physical experiment of liquid Ga–In–Sn alloy circulating flow was carried out in Perspex mold with Halbach’s permanent magnets (HPMs) to investigate the magnetic field distribution of HPMs and its impactful electromagnetic braking effect. The numerical simulation of 1450 mm × 230 mm slab shows that a stronger magnetic field over 0.3–0.625 T is formed at the wide surface and the narrow surface of the mold, which provides an effective electromagnetic braking for controlling the impingement of molten steel jet and suppressing the fluctuation of molten steel/slag interface. The numerical simulation results show that in the PMFC-Mold, the region with the turbulent kinetic energy greater than 0.01 and 0.04 m<sup>2</sup> s<sup>−2</sup> on the upper backflow zone and near the narrow surface of the mold are significantly reduced. The maximum turbulent kinetic energy of the submerged entry nozzle (SEN) jet in front of the narrow surface is significantly reduced, and the SEN jet moves downward before impacting the narrow surface of the mold. In the PMFC-Mold, the region with the surface velocity greater than 0.2 m s<sup>−1</sup> on the steel/slag interface is eliminated, the flow pattern and fluctuation profiles on the molten steel/slag interface become regular on both sides of SEN, and the vortex near SEN disappears. The maximum fluctuation height of molten steel/slag interface is controlled below 2.59 and 5.40 mm corresponding to the casting speed of 1.6 and 2.0 m min<sup>−1</sup>, respectively.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141869933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of different annealing temperatures on microstructure, mechanical properties, and magnetic properties of cold-rolled 20Mn23AlV non-magnetic structural steel 不同退火温度对冷轧 20Mn23AlV 无磁结构钢的微观结构、机械性能和磁性能的影响
IF 2.5 2区 材料科学
Journal of Iron and Steel Research International Pub Date : 2024-07-31 DOI: 10.1007/s42243-024-01278-3
Xing-chang Tang, Gang-hu Cheng, Zhi-hui Jia, Da-yang Qi, Zhi-jian Zhang, Ying-ying Shen, Wei-lian Zhou, Yuan-yuan Hou
{"title":"Effects of different annealing temperatures on microstructure, mechanical properties, and magnetic properties of cold-rolled 20Mn23AlV non-magnetic structural steel","authors":"Xing-chang Tang, Gang-hu Cheng, Zhi-hui Jia, Da-yang Qi, Zhi-jian Zhang, Ying-ying Shen, Wei-lian Zhou, Yuan-yuan Hou","doi":"10.1007/s42243-024-01278-3","DOIUrl":"https://doi.org/10.1007/s42243-024-01278-3","url":null,"abstract":"<p>The variations in the mechanical and magnetic properties of cold-rolled 20Mn23AlV non-magnetic structural steel after annealing at different temperatures were investigated. The microstructure and precipitation changes during annealing were studied by optical microscopy, scanning electron microscopy, and transmission electron microscopy. The results show that recrystallization completed after annealing at 620 °C, resulting in grain sizes of approximately 800 nm and the best combination of strength and plasticity. The yield-to-tensile ratio of the non-magnetic structural steel after cold rolling continuously decreases from low to high temperatures after annealing, with the highest value being 0.89 and the lowest value being 0.43, indicating a wide range of yield-to-tensile ratio adjustment. The introduction of numerous dislocations during cold rolling provided favorable nucleation sites for precipitation, leading to abundant precipitation of the fine second-phase V(C, N). The phase composition of the samples remained unchanged as single-phase austenite after annealing, and the relative permeability values were calculated to be less than 1.002, meeting the requirements for non-magnetic steel in terms of magnetic properties.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141873172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Mo on acicular ferrite transformation and interphase precipitation of Nb–V–N microalloyed steel during a continuous cooling process 钼对连续冷却过程中 Nb-V-N 微合金钢针状铁素体转变和相间析出的影响
IF 2.5 2区 材料科学
Journal of Iron and Steel Research International Pub Date : 2024-07-29 DOI: 10.1007/s42243-024-01281-8
Jing Zhang, Wen-bin Xin, Deng-yun Hou, Jun Peng, Zhi-bo Zhao, Yang Tong
{"title":"Effect of Mo on acicular ferrite transformation and interphase precipitation of Nb–V–N microalloyed steel during a continuous cooling process","authors":"Jing Zhang, Wen-bin Xin, Deng-yun Hou, Jun Peng, Zhi-bo Zhao, Yang Tong","doi":"10.1007/s42243-024-01281-8","DOIUrl":"https://doi.org/10.1007/s42243-024-01281-8","url":null,"abstract":"<p>The substantial influences of Mo contents varying from 0 to 0.26 and 0.50 wt.% on the microstructural evolution and MX (M = Nb, V and Mo; X = C and N) precipitation characteristics of Nb–V–N microalloyed steels processed by hot deformation and continuous cooling were studied using a Gleeble 3800 thermomechanical simulator. Metallographic analysis showed that the ferrite microstructure transformed from polygonal ferrite (PF) in 0Mo steel to both acicular ferrite (AF) and PF in 0.26Mo and 0.50Mo steels, and AF content first increased and then decreased. The thermodynamic calculations and the experimental results proved that the quantity of solid solution of Mo in austenite obviously increased, which reduced the austenite (γ) to ferrite (α) transformation temperature, consequently promoting AF formation in 0.26Mo steel and bainite transformation in 0.50Mo steel. Moreover, the submicron Nb-rich MX particles that precipitated at the temperature of the austenite region further induced AF heterogeneous nucleation with an orientation relationship of <span>((011)_{{{text{MX}}}} //(100)_{{{text{Ferrite}}}})</span> and <span>([1overline{1}1]_{{{text{MX}}}} //[001]_{{{text{Ferrite}}}})</span>. The interphase precipitation of the nanosized V-rich MX particles with Mo partitioning that precipitated during γ → α transformation exhibited a Baker–Nutting orientation relationship of <span>(left( {100} right)_{{{text{MX}}}} //left( {100} right)_{{{text{Ferrite}}}})</span> and <span>(left[ {001} right]_{{{text{MX}}}} //left[ {01overline{1}} right]_{{{text{Ferrite}}}})</span> with respect to the ferrite matrix. With increasing Mo content from 0 to 0.26 and 0.50 wt.%, the sheet spacing decreased from 46.9–49.0 to 34.6–38.6 and 25.7–28.0 nm, respectively, which evidently hindered dislocation movement and greatly enhanced precipitation strengthening. Furthermore, facilitating AF formation and interphase precipitation was beneficial to improving steel properties, and the optimal Mo content was 0.26 wt.%.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141869752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental investigation on characteristics of hook in continuously cast slab of low carbon steel 低碳钢连铸板坯挂钩特性的实验研究
IF 2.5 2区 材料科学
Journal of Iron and Steel Research International Pub Date : 2024-07-26 DOI: 10.1007/s42243-024-01283-6
Xiao-hua Wang, Wen-jie Tong, Sen Luo, Ye-lian Zhou, Wei-ling Wang, Miao-yong Zhu
{"title":"Experimental investigation on characteristics of hook in continuously cast slab of low carbon steel","authors":"Xiao-hua Wang, Wen-jie Tong, Sen Luo, Ye-lian Zhou, Wei-ling Wang, Miao-yong Zhu","doi":"10.1007/s42243-024-01283-6","DOIUrl":"https://doi.org/10.1007/s42243-024-01283-6","url":null,"abstract":"<p>During the continuous casting process of low carbon steel, the solidified hook formed in the mold has great effects on the surface quality of the cast slab. Some factory experiments have been conducted to investigate the microscopic characteristics and reveal the influence of process parameters on solidified hooks. The depth of the hooks showed a positive correlation with the deflection angle, length, and oscillation mark (OM) depth, which indicates that the OM depth can serve as an approximate indicator for evaluating the depth of the solidified hooks. On the wide and narrow faces of the cast slab, the depth of the solidified hooks and the temperature distribution in the mold show opposite trends, with lower depths of solidified hooks at positions with higher temperatures. In addition, the influence of process parameters on solidified hooks was analyzed. With the increase in superheat, not only the depth of solidified hooks gradually decreases, but also the ratio of depression-typed marks increases. Increasing casting speed and decreasing immersion depth of the submerged entry nozzle will both lead to a decrease in the depth of the solidified hook.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141781323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of electric current on secondary phase dissolution and elements migration behavior of a Ni-based single crystal superalloy 电流对镍基单晶超合金次生相溶解和元素迁移行为的影响
IF 2.5 2区 材料科学
Journal of Iron and Steel Research International Pub Date : 2024-07-26 DOI: 10.1007/s42243-024-01266-7
Ying-ju Li, Ce Zheng, Xiao-hui Feng, Qiu-yan Huang, Tian-jiao Luo, Yuan-sheng Yang
{"title":"Effect of electric current on secondary phase dissolution and elements migration behavior of a Ni-based single crystal superalloy","authors":"Ying-ju Li, Ce Zheng, Xiao-hui Feng, Qiu-yan Huang, Tian-jiao Luo, Yuan-sheng Yang","doi":"10.1007/s42243-024-01266-7","DOIUrl":"https://doi.org/10.1007/s42243-024-01266-7","url":null,"abstract":"<p>The second phase dissolution and elements migration behavior of a nickel-based single crystal superalloy during solution heat treatment with direct current were investigated for simplifying and shortening the solution heat treatment of the Ni-based single crystal superalloy. The results showed that the electric current solution heat treatment improved microstructural homogenization as well as the distribution of alloying elements, especially for the refractory metal W and Mo. The microsegregation ratios for Mo and W after electric current solution heat treatment at 1230 °C for 4 h are near those without electric current at 1250 °C for 4 h. The electric current accelerated the γ′ phase dissolution process, and the γ′ phase could be completely dissolved at a lower treatment temperature or within a shorter treatment time under electric current solution heat treatment with direct current. A microcosmic current model was proposed to analyze the effect of the electric current on the solution heat treatment of the Ni-based single crystal superalloy.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141781324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of C content and tempering temperature on impact-abrasive wear resistance of high-C martensitic steel C含量和回火温度对高C马氏体钢耐冲击磨损性的影响
IF 2.5 2区 材料科学
Journal of Iron and Steel Research International Pub Date : 2024-07-25 DOI: 10.1007/s42243-024-01288-1
Tian-long Liu, Xin-yue Zhang, Xiao-bo Cui, Shan-shan Chen, Xiao-yan Sun, Jun Long, Zhi-bin Zheng
{"title":"Effects of C content and tempering temperature on impact-abrasive wear resistance of high-C martensitic steel","authors":"Tian-long Liu, Xin-yue Zhang, Xiao-bo Cui, Shan-shan Chen, Xiao-yan Sun, Jun Long, Zhi-bin Zheng","doi":"10.1007/s42243-024-01288-1","DOIUrl":"https://doi.org/10.1007/s42243-024-01288-1","url":null,"abstract":"<p>The impact-abrasive wear behavior of high-C martensitic steel was investigated, taking into account varying carbon (C) contents and different tempering temperatures. The evaluation was done through comprehensive microstructural characterization, analysis of worn surface morphology, and measurement of key performance like impact toughness and surface hardening. The findings demonstrate that increasing C content and tempering temperature both has a positive effect on wear resistance, with C content exhibiting a more pronounced influence compared to the tempering temperature. The improved wear resistance of the steel with higher C content and tempering at a higher temperature can be attributed to its enhanced impact toughness. This increase in impact toughness is primarily a result of microstructural refinement and alterations in carbide morphology. Moreover, cyclic impact loading induces surface hardening due to dislocation strengthening within the martensite and the retained austenite, leading to an increase in surface hardness. The combination of surface hardening and excellent impact toughness synergistically contributes to the overall improved wear resistance observed in the experimental steel with higher C content after tempering at a higher temperature. Additionally, the dominant features observed on the worn surface are scratches and substrate delamination, indicative of a wear mechanism of the experimental steels characterized by micro-cutting/ploughing and fatigue wear.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141781676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparisons of {100} texture improvement and formability in hot-rolled non-oriented electrical steel by austenite–ferrite phase transformation and shear deformation 通过奥氏体-铁素体相变和剪切变形改善热轧无取向电工钢中{100}组织和成型性的比较
IF 2.5 2区 材料科学
Journal of Iron and Steel Research International Pub Date : 2024-07-24 DOI: 10.1007/s42243-024-01277-4
Chi-hao Yu, Hong-jiang Pan, Yan-ping Zhao, De-ting Tang, Hai-jun Wang
{"title":"Comparisons of {100} texture improvement and formability in hot-rolled non-oriented electrical steel by austenite–ferrite phase transformation and shear deformation","authors":"Chi-hao Yu, Hong-jiang Pan, Yan-ping Zhao, De-ting Tang, Hai-jun Wang","doi":"10.1007/s42243-024-01277-4","DOIUrl":"https://doi.org/10.1007/s42243-024-01277-4","url":null,"abstract":"<p>Over the years, the high magnetic induction of industrial Mn-added electrical steel is assumed to be the enhancement of {100} texture derived from its austenite–ferrite phase transformation during hot rolling (phase transformation (PT) method). However, it is still undetermined without straightforward experimental evidence. The reason for {100} texture improvement of Mn-added electrical steel is experimentally confirmed due to the recrystallization induced by the austenite–ferrite phase transformation during hot rolling. Moreover, a more promising methodology to further improve {100} texture and formability of hot-rolled electrical steel is promoted by the control of hot rolling deformation condition (shear deformation (SD) method). The results show that the nucleation mechanisms of {100} oriented recrystallized grains are different in the samples by SD and PT methods, which are in-depth shear deformation and austenite–ferrite phase transformation, respectively. In this case, coarse {100} oriented recrystallized grains and low residual stress are obtained in the sample by SD method, which is responsible for its superior {100} texture and formability. In contrast, the sample by PT method forms fine recrystallized grains with random orientations and accumulates severe residual stress.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141781326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信