Ming He, Qing-wei Wang, Li-jia Zhao, Wang-zhong Mu, Xing-an Liu, Qiang Wang
{"title":"Optimizing cooling approach of spiral coil for an electromagnetic steel teeming system of ladle in continuous casting production","authors":"Ming He, Qing-wei Wang, Li-jia Zhao, Wang-zhong Mu, Xing-an Liu, Qiang Wang","doi":"10.1007/s42243-024-01260-z","DOIUrl":null,"url":null,"abstract":"<p>To address the current issues with the conventional slide gate system utilized in the steel teeming process, a unique electromagnetic induction controlled automated steel teeming (EICAST) technology has been developed. Cooling means of spiral coil in this technology is directly related to its service life. Firstly, heat transfer processes of air cooling and spray cooling were compared and analyzed. Secondly, the impacts of water temperature, water flow rate and air flow rate were examined in order to maximize the spray cooling effect. To maintain coil temperature at a low value consistently throughout the entire thermal cycle process of the ladle, a combined cooling mode was finally employed. Numerical simulation was applied to examine the coil temperature variation with different cooling systems and characteristics. Before coil operation, spray cooling is said to be more effective. By controlling the water flow rate and air flow rate, the spray cooling effect is enhanced. However, water temperature has little or no impact when using spray cooling. Air cooling during the secondary refining process and spray cooling prior to coil operation are combined to further lower coil temperature. When the direction of the spray cooling is from bottom to top, the coil temperature is lowered below 165 °C. A practical induction coil cooling plan was provided for the EICAST technology’s production process.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":"47 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42243-024-01260-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To address the current issues with the conventional slide gate system utilized in the steel teeming process, a unique electromagnetic induction controlled automated steel teeming (EICAST) technology has been developed. Cooling means of spiral coil in this technology is directly related to its service life. Firstly, heat transfer processes of air cooling and spray cooling were compared and analyzed. Secondly, the impacts of water temperature, water flow rate and air flow rate were examined in order to maximize the spray cooling effect. To maintain coil temperature at a low value consistently throughout the entire thermal cycle process of the ladle, a combined cooling mode was finally employed. Numerical simulation was applied to examine the coil temperature variation with different cooling systems and characteristics. Before coil operation, spray cooling is said to be more effective. By controlling the water flow rate and air flow rate, the spray cooling effect is enhanced. However, water temperature has little or no impact when using spray cooling. Air cooling during the secondary refining process and spray cooling prior to coil operation are combined to further lower coil temperature. When the direction of the spray cooling is from bottom to top, the coil temperature is lowered below 165 °C. A practical induction coil cooling plan was provided for the EICAST technology’s production process.
期刊介绍:
Publishes critically reviewed original research of archival significance
Covers hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, physical chemistry, solidification, mechanical working, solid state reactions, materials processing, and more
Includes welding & joining, surface treatment, mathematical modeling, corrosion, wear and abrasion
Journal of Iron and Steel Research International publishes original papers and occasional invited reviews on aspects of research and technology in the process metallurgy and metallic materials. Coverage emphasizes the relationships among the processing, structure and properties of metals, including advanced steel materials, superalloy, intermetallics, metallic functional materials, powder metallurgy, structural titanium alloy, composite steel materials, high entropy alloy, amorphous alloys, metallic nanomaterials, etc..