Journal of Iron and Steel Research International最新文献

筛选
英文 中文
High-temperature wetting behavior between slag and refractory 炉渣与耐火材料之间的高温润湿行为
IF 2.5 2区 材料科学
Journal of Iron and Steel Research International Pub Date : 2024-05-29 DOI: 10.1007/s42243-024-01252-z
Yong-xin Wang, Ya-ge Li, Ya-bo Gao, Zhong Huang, Hai-jun Zhang
{"title":"High-temperature wetting behavior between slag and refractory","authors":"Yong-xin Wang, Ya-ge Li, Ya-bo Gao, Zhong Huang, Hai-jun Zhang","doi":"10.1007/s42243-024-01252-z","DOIUrl":"https://doi.org/10.1007/s42243-024-01252-z","url":null,"abstract":"<p>Slag corrosion is one of the main factors of the damage of refractory, and its primary manifestations involve the melting of refractory in slag and the slag penetration into refractory, both of which are highly related to the wetting behavior between slag and refractory. The high-temperature wettability could be characterized by parameters including the surface tension, adhesion work, and spreading coefficient of the slag on refractory surface, and it could be suppressed by altering the slag/refractory interface, thus resulting in an improved anti-corrosion performance. From this, the key knowledges of the slag corrosion, theory of wetting behavior and test of high-temperature contact angle were firstly summarized. Then, the major factors influencing the high-temperature slag wetting behavior were discussed based on the aspects of slag composition, refractory composition, and surface microstructure. Finally, the future research direction was proposed in this field.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141197140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Refining mechanism of tin–bismuth alloy solidified structure upon applying direct current attached mold 锡铋合金在直流附模下凝固结构的细化机理
IF 2.5 2区 材料科学
Journal of Iron and Steel Research International Pub Date : 2024-05-29 DOI: 10.1007/s42243-024-01238-x
Si-yao Liu, Ye Zhou, Xin-cheng Miao, Qing-he Xiao, Rui Guan, Xin-gang Ai, Sheng-li Li
{"title":"Refining mechanism of tin–bismuth alloy solidified structure upon applying direct current attached mold","authors":"Si-yao Liu, Ye Zhou, Xin-cheng Miao, Qing-he Xiao, Rui Guan, Xin-gang Ai, Sheng-li Li","doi":"10.1007/s42243-024-01238-x","DOIUrl":"https://doi.org/10.1007/s42243-024-01238-x","url":null,"abstract":"<p>Herein, the effect of direct current (DC) attached the mold on refining the microstructure and alleviating the central segregation of a tin–bismuth (Sn–10 wt.% Bi) alloy ingot during the solidification process has been investigated. The experiment used a self-made device, which can achieve the effect of refining the solidified structure and alleviate the segregation of the metal casting. Numerical simulations were performed to calculate the Lorentz force, Joule heating and induced melt vortex flow for the magneto-hydrodynamic case. Our results show that the maximum velocity of the global electro-vortex reached 0.017 m s<sup>–1</sup>. The DC-induced electro-vortex was found to be the primary reason of refining the equiaxed grain and alleviating the segregation of the β-Sn crystal boundary. The grain refining effect observed in these experiments can be solely attributed to the forced melt flow driven by the Lorentz force. DC field attached the mold can lead to grain refinement and alleviate the segregation of the ingot via a global vortex. The technology can be applied not only to opened molds, but also toward improving the quality in closed molds.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141170420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism of thermal compressive strength evolution of carbon-bearing iron ore pellet without binders during reduction process 不含粘结剂的含碳铁矿球团在还原过程中的热压强度演变机理
IF 2.5 2区 材料科学
Journal of Iron and Steel Research International Pub Date : 2024-05-27 DOI: 10.1007/s42243-024-01245-y
Hong-tao Wang, Yi-bin Wang, Shi-xin Zhu, Qing-min Meng, Tie-jun Chun, Hong-ming Long
{"title":"Mechanism of thermal compressive strength evolution of carbon-bearing iron ore pellet without binders during reduction process","authors":"Hong-tao Wang, Yi-bin Wang, Shi-xin Zhu, Qing-min Meng, Tie-jun Chun, Hong-ming Long","doi":"10.1007/s42243-024-01245-y","DOIUrl":"https://doi.org/10.1007/s42243-024-01245-y","url":null,"abstract":"<p>Against the background of “carbon peak and carbon neutrality,” it is of great practical significance to develop non-blast furnace ironmaking technology for the sustainable development of steel industry. Carbon-bearing iron ore pellet is an innovative burden of direct reduction ironmaking due to its excellent self-reducing property, and the thermal strength of pellet is a crucial metallurgical property that affects its wide application. The carbon-bearing iron ore pellet without binders (CIPWB) was prepared using iron concentrate and anthracite, and the effects of reducing agent addition amount, size of pellet, reduction temperature and time on the thermal compressive strength of CIPWB during the reduction process were studied. Simultaneously, the mechanism of the thermal strength evolution of CIPWB was revealed. The results showed that during the low-temperature reduction process (300–500 °C), the thermal compressive strength of CIPWB linearly increases with increasing the size of pellet, while it gradually decreases with increasing the anthracite ratio. When the CIPWB with 8% anthracite is reduced at 300 °C for 60 min, the thermal strength of pellet is enhanced from 13.24 to 31.88 N as the size of pellet increases from 8.04 to 12.78 mm. Meanwhile, as the temperature is 500 °C, with increasing the anthracite ratio from 2% to 8%, the thermal compressive strength of pellet under reduction for 60 min remarkably decreases from 41.47 to 8.94 N. Furthermore, in the high-temperature reduction process (600–1150 °C), the thermal compressive strength of CIPWB firstly increases and then reduces with increasing the temperature, while it as well as the temperature corresponding to the maximum strength decreases with increasing the anthracite ratio. With adding 18% anthracite, the thermal compressive strength of pellet reaches the maximum value at 800 °C, namely 35.00 N, and obtains the minimum value at 1050 °C, namely 8.60 N. The thermal compressive strength of CIPWB significantly depends on the temperature, reducing agent dosage, and pellet size.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141170305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnesium-containing pellet regulating blast furnace ferrous burden interaction: softening–melting behavior and mechanism 调节高炉铁料相互作用的含镁球团:软化-熔化行为与机理
IF 2.5 2区 材料科学
Journal of Iron and Steel Research International Pub Date : 2024-05-26 DOI: 10.1007/s42243-024-01223-4
Li-ming Ma, Jian-liang Zhang, Yao-zu Wang, Xiao-yong Ma, Gui-lin Wang, Zhuo Li, Hui-qing Jiang, Zheng-jian Liu
{"title":"Magnesium-containing pellet regulating blast furnace ferrous burden interaction: softening–melting behavior and mechanism","authors":"Li-ming Ma, Jian-liang Zhang, Yao-zu Wang, Xiao-yong Ma, Gui-lin Wang, Zhuo Li, Hui-qing Jiang, Zheng-jian Liu","doi":"10.1007/s42243-024-01223-4","DOIUrl":"https://doi.org/10.1007/s42243-024-01223-4","url":null,"abstract":"<p>MgO participates in all stages of sintering, pelletizing, and blast furnace ironmaking, and synergistically optimizing the distribution of MgO in ferrous burden can effectively enhance the interaction within the ferrous burdens and optimize the softening–melting properties of the mixed burden. Magnesium-containing pellets mixed with low-MgO sinter or mixed with high-MgO sinter in the blast furnace ferrous burden structure have opposite softening–melting performance laws. When the structure of the ferrous burden is magnesium-containing pellets mixed with low-MgO sinter, the magnesium-containing pellets can enhance the interaction of the ferrous burden in the process of softening–melting, which can optimize the composition of the slag phase and improve the slag liquidity. When the structure of the ferrous burden is magnesium-containing pellets mixed with high-MgO sinter, the magnesium-containing pellets weaken the interaction of the ferrous burden in the process of softening–melting, increase the content of the high melting point solid-phase particles in the slag, lead to an increase in the viscosity of the slag and difficult separation of the slag and iron, and decrease the permeability of the charge layer. Therefore, to ensure good permeability of the mixed burden, the following measures are suggested: optimizing the MgO distribution of the ferrous burden, reducing the MgO content of the sinter to 1.96 wt.%, increasing the MgO content of the pellets to 1.03–1.30 wt.%, controlling the MgO/Al<sub>2</sub>O<sub>3</sub> ratio of the mixed burden within 1.15–1.32, narrowing the position of the cohesive zone, and maintaining an <i>S</i> value (permeability index) of approximately 150 kPa °C.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141151018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impurity formation mechanism of silicon carbide crystals smelted by Acheson process 用艾奇逊工艺冶炼碳化硅晶体的杂质形成机理
IF 2.5 2区 材料科学
Journal of Iron and Steel Research International Pub Date : 2024-05-24 DOI: 10.1007/s42243-024-01246-x
Dong Feng, Hong-qiang Ru, Xu-dong Luo, Jie-gang You, Ling Zhang
{"title":"Impurity formation mechanism of silicon carbide crystals smelted by Acheson process","authors":"Dong Feng, Hong-qiang Ru, Xu-dong Luo, Jie-gang You, Ling Zhang","doi":"10.1007/s42243-024-01246-x","DOIUrl":"https://doi.org/10.1007/s42243-024-01246-x","url":null,"abstract":"","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141101750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radical involved reactive wetting and retarding mechanism of alumina refractory ceramic by molten slags under weak static magnetic field 弱静磁场下熔渣对氧化铝耐火陶瓷的激进参与反应润湿和阻滞机理
IF 2.5 2区 材料科学
Journal of Iron and Steel Research International Pub Date : 2024-05-24 DOI: 10.1007/s42243-024-01251-0
Sheng-hao Li, Ao Huang, Fan-bo Zeng, Hui Peng, Hao-ran Wei, Xue-chun Huang, Sheng-qiang Song, Hua-zhi Gu
{"title":"Radical involved reactive wetting and retarding mechanism of alumina refractory ceramic by molten slags under weak static magnetic field","authors":"Sheng-hao Li, Ao Huang, Fan-bo Zeng, Hui Peng, Hao-ran Wei, Xue-chun Huang, Sheng-qiang Song, Hua-zhi Gu","doi":"10.1007/s42243-024-01251-0","DOIUrl":"https://doi.org/10.1007/s42243-024-01251-0","url":null,"abstract":"","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141101915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of reheating furnace rolling delay strategies based on a minimum energy consumption principle 基于最低能耗原则的再加热炉轧制延迟策略优化
IF 2.5 2区 材料科学
Journal of Iron and Steel Research International Pub Date : 2024-05-22 DOI: 10.1007/s42243-024-01227-0
Jing-qi Qiu, Jun-xiao Feng, Xian-mo Huang, Zhi-feng Huang
{"title":"Optimization of reheating furnace rolling delay strategies based on a minimum energy consumption principle","authors":"Jing-qi Qiu, Jun-xiao Feng, Xian-mo Huang, Zhi-feng Huang","doi":"10.1007/s42243-024-01227-0","DOIUrl":"https://doi.org/10.1007/s42243-024-01227-0","url":null,"abstract":"","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141108301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crevice corrosion of reinforcing steel in carbonated simulated concrete pore solutions contaminated by chloride 钢筋在氯化物污染的碳化模拟混凝土孔隙溶液中的缝隙腐蚀
IF 2.5 2区 材料科学
Journal of Iron and Steel Research International Pub Date : 2024-05-20 DOI: 10.1007/s42243-024-01221-6
Peng-peng Wu, Yuan-pei Gong, Shao-hua Zhang, Yue-zhong Zhang, Bao-sheng Liu, Guang-ling Song
{"title":"Crevice corrosion of reinforcing steel in carbonated simulated concrete pore solutions contaminated by chloride","authors":"Peng-peng Wu, Yuan-pei Gong, Shao-hua Zhang, Yue-zhong Zhang, Bao-sheng Liu, Guang-ling Song","doi":"10.1007/s42243-024-01221-6","DOIUrl":"https://doi.org/10.1007/s42243-024-01221-6","url":null,"abstract":"","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141119143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production of ultrafine iron powder by low-temperature hydrogen reduction: properties change with temperature 用低温氢还原法生产超细铁粉:随温度变化的特性
IF 2.5 2区 材料科学
Journal of Iron and Steel Research International Pub Date : 2024-05-18 DOI: 10.1007/s42243-024-01228-z
Min Gan, En-di Guo, Hao-rui Li, Yun-can Cao, Xiao-hui Fan, Zhi-yun Ji, Zeng-qing Sun
{"title":"Production of ultrafine iron powder by low-temperature hydrogen reduction: properties change with temperature","authors":"Min Gan, En-di Guo, Hao-rui Li, Yun-can Cao, Xiao-hui Fan, Zhi-yun Ji, Zeng-qing Sun","doi":"10.1007/s42243-024-01228-z","DOIUrl":"https://doi.org/10.1007/s42243-024-01228-z","url":null,"abstract":"<p>Ultrafine iron powder is widely used due to its excellent performance. Hydrogen reduction of fine-grained high-purity iron concentrate to prepare ultrafine iron powder has the advantages of low energy consumption, pollution-free, and low cost. The hydrogen reduction of high-purity iron concentrates, characterized by the maximum particle size of 6.43 μm when the cumulative distribution is 50% and the maximum particle size of 11.85 μm when the cumulative distribution is 90% while the total iron content of 72.10%, was performed. The hydrogen reduction could be completed at 425 °C, and the purity of ultrafine iron powders was more than 99 wt.% in the range of 425–650 °C. Subsequently, the effect of reduction temperature on various properties of ultrafine iron powder was investigated, including particle morphology, particle size, specific surface area, lattice parameters, bulk density, and reaction activity. It was found that the reaction activity of the iron powders prepared by hydrogen reduction was much higher than that of the products of carbonyl and liquid phase synthesis. Below 500 °C, the reduced iron powders were nearly unbound, with a small particle size and a low bulk density. The particles had a porous surface, with a specific surface area as high as 11.31 m<sup>2</sup> g<sup>−1</sup>. The crystallization of reduced iron powders was imperfect at this time, the amorphization degree was prominent, and the interior contained a high mechanical storage energy, which had shown high reaction reactivity. It was suitable for catalysts, metal fuels, and other functionalized applications.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141059661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of retained austenite in advanced high-strength steel: ductility and toughness 先进高强度钢中残余奥氏体的作用:延展性和韧性
IF 2.5 2区 材料科学
Journal of Iron and Steel Research International Pub Date : 2024-05-18 DOI: 10.1007/s42243-023-01165-3
Vung Lam Nuam, Hao Zhang, Ying-chun Wang, Zhi-ping Xiong
{"title":"Role of retained austenite in advanced high-strength steel: ductility and toughness","authors":"Vung Lam Nuam, Hao Zhang, Ying-chun Wang, Zhi-ping Xiong","doi":"10.1007/s42243-023-01165-3","DOIUrl":"https://doi.org/10.1007/s42243-023-01165-3","url":null,"abstract":"<p>Enhancing the ductility and toughness of advanced high-strength steels is essential for the wide range of promising applications. The retained austenite (RA) is a key phase due to the austenite-to-martensite transformation and its transformation-induced plasticity effect. It is commonly accepted that slow RA-to-martensite transformation is beneficial to ductility; therefore, the RA fraction and stability should be carefully controlled. The RA stability is related to its morphology, size, carbon content, neighboring phase and orientation. Importantly, these factors are cross-influenced. It is noteworthy that the influence of RA on ductility and fracture toughness is not consistent because of their difference in stress state. There is no clear relationship between fracture toughness and tensile properties. Thus, it is important to understand the role of RA in toughness. The toughness is enhanced during the RA-to-martensite transformation, while the fracture toughness is decreased due to the formation of fresh and brittle martensite. As a result, the findings regarding to the effect of RA on fracture toughness are conflicting. Further investigations should be conducted in order to fully understand the effects of RA on ductility and fracture toughness, which can optimize the combination of ductility and toughness in AHSSs.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141059662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信