Journal of Intelligent Material Systems and Structures最新文献

筛选
英文 中文
A pendulum based frequency-up conversion mechanism for vibrational energy harvesting in low-speed rotary structures 用于低速旋转结构振动能量收集的基于摆锤的频率提升转换机制
IF 2.7 3区 材料科学
Journal of Intelligent Material Systems and Structures Pub Date : 2024-05-28 DOI: 10.1177/1045389x241232044
Weijie Xian, Soobum Lee
{"title":"A pendulum based frequency-up conversion mechanism for vibrational energy harvesting in low-speed rotary structures","authors":"Weijie Xian, Soobum Lee","doi":"10.1177/1045389x241232044","DOIUrl":"https://doi.org/10.1177/1045389x241232044","url":null,"abstract":"Motivated to run a self-powering monitoring sensor on a wind turbine blade, this paper proposes a pendulum based frequency-up converter that effectively captures a low-speed mechanical rotation into high-frequency vibration of a piezoelectric cantilever beam. A system of governing equations for the proposed concept is developed to describe the motion of the pendulum, the vibration of the beam, and the voltage output of the harvester. Design optimization is performed to improve the power generation performance, and the simulation results are verified experimentally. We demonstrate the improved power density from the proposed concept compared to the disk driven frequency-up converters.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"8 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141171591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trajectory tracking control of parallel manipulator actuated with shape memory wire 用形状记忆线驱动平行机械手的轨迹跟踪控制
IF 2.7 3区 材料科学
Journal of Intelligent Material Systems and Structures Pub Date : 2024-05-13 DOI: 10.1177/1045389x241239371
M Banu Sundareswari, K Dhanalakshmi, A Vimala Starbino, G Then Mozhi
{"title":"Trajectory tracking control of parallel manipulator actuated with shape memory wire","authors":"M Banu Sundareswari, K Dhanalakshmi, A Vimala Starbino, G Then Mozhi","doi":"10.1177/1045389x241239371","DOIUrl":"https://doi.org/10.1177/1045389x241239371","url":null,"abstract":"This study describes the design of a parallel spatial manipulator with four degrees of freedom actuated with shape memory alloy (SMA) wire to validate the use of SMA in complicated mechatronics systems. The manipulator has a closed kinematic structure, which includes a fixed base and a moving square platform (end effector). The four arms of the manipulator are SMA wires fastened between the fixed base and the end effector. SMA wire-based actuators replace bulky conventional revolute actuators. This work spotlights the development of an actuator model, dimensional analysis, and design of cascade control strategies of various PID and sliding mode controller in their integral and fractional order configurations. Experimental evaluation of the actuator is performed through trajectory tracking to quantify the different controller configurations. The experimental results indicate that the parallel manipulator associated with SMA wire actuators is the best alternative to conventional motion stages for highly precise micro-positioning and tracking applications in the fields of 3D printing, intricate surgical operations, the medical and pharmaceutical industries, and flight and gaming simulators.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"46 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140940628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design, analysis, and experimental investigations of an asymmetrical under-actuated micro-gripper 非对称欠动微型夹持器的设计、分析和实验研究
IF 2.7 3区 材料科学
Journal of Intelligent Material Systems and Structures Pub Date : 2024-04-30 DOI: 10.1177/1045389x241246827
Zhigang Wu, Yu Wang, Min Chen, Bingxiao Ding
{"title":"Design, analysis, and experimental investigations of an asymmetrical under-actuated micro-gripper","authors":"Zhigang Wu, Yu Wang, Min Chen, Bingxiao Ding","doi":"10.1177/1045389x241246827","DOIUrl":"https://doi.org/10.1177/1045389x241246827","url":null,"abstract":"In this paper, we present a new asymmetrical under-actuated micro-gripper which can perform twisting and gripping operation to the target simultaneously actuated by a single piezoelectric actuator. Two improved hybrid amplification mechanisms were designed integrated with three different flexure hinges to enhance dynamic performances. Kinematics and dynamics models of the micro-gripper including input stiffness, displacement amplification ratio, and natural frequency based on pseudo-rigid-body method and Lagrange’s equations were derived. Proposed models were evaluated by finite element simulation studies. Experimental results shown that our designed micro-gripper possesses good performance in terms of clamping reliability and dynamic response.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"212 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthetic oil gels with organoclays in the formulation of magnetorheological fluids 含有机粘土的合成油凝胶在磁流变液配方中的应用
IF 2.7 3区 材料科学
Journal of Intelligent Material Systems and Structures Pub Date : 2024-04-22 DOI: 10.1177/1045389x241238781
José HR Rocha, Júlio GF Manuel, Antonio JF Bombard
{"title":"Synthetic oil gels with organoclays in the formulation of magnetorheological fluids","authors":"José HR Rocha, Júlio GF Manuel, Antonio JF Bombard","doi":"10.1177/1045389x241238781","DOIUrl":"https://doi.org/10.1177/1045389x241238781","url":null,"abstract":"Magnetorheological fluids (MRF) are smart composite materials that, under an external magnetic field, show a reversible solid-liquid transition in less than 10 ms. This study aimed to evaluate which organoclays would jellify a synthetic oil for the formulation of MRF. Three dispersant additives for carbonyl iron powder were evaluated. Fifteen different gelling additives from four clay families, bentonites, hectorites, montmorillonites, and mixed mineral thixotropes (MMT), were dispersed in oil only, keeping the same concentration, without iron particles. The gels were then tested through amplitude and frequency sweeps in oscillatory rheometry to evaluate their viscoelastic behavior. The thixotropy of the gels was measured through the “three-interval” test in a rheometer. After selecting the best gelling additive to prepare the MRF, three dispersing additives had their rheology evaluated to determine the best magnetorheological effect and redispersibility after 1 year of sample preparation. In the linear viscoelastic region, all MMT clays resulted in a weak viscoelastic gel (G′∼100 to 300 Pa and G″∼30 to 50 Pa). Some of the bentonite clays jellified, and others did not. The best organoclays were montmorillonites and hectorites, which formed consistent viscoelastic gels (G′∼1 to 5 kPa and G″∼70 to 250 Pa). The best organoclay presented a yield stress σ<jats:sub>0</jats:sub> = (42 ± 3) Pa, a storage modulus G′ = (2690 ± 201) Pa, and a cohesive energy density (CED) = 98 mJ/m<jats:sup>3</jats:sup>, and it was selected to explore the rheology of MRF with three dispersant additives: octan-1-ol, octan-1-amine, and L-α-Phosphatidylcholine. All the MRFs were prepared using carbonyl iron powder HS (BASF SE) in oil gels and with the same organoclay. All three dispersant additives showed a thixotropic recovery above 100% in the three-interval test. Regarding the redispersibility after 1 year, the MRF formulations with octan-1-amine and lecithin were reproved, as they reached normal force peaks of 19 and 24 N, while the work was 28 and 415 mJ, respectively. The best MRF was formulated with octan-1-ol, and resulted in a normal force of 0.33 N and 3.4 mJ at 35 mm of vane penetration. Therefore, we conclude that the MRF with octan-1-ol and montmorillonite #6 showed a better balance between thixotropy, MR effect, and, above all, good redispersibility.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"102 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140635993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and performance analysis of a piezoelectric jetting dispensing valve 压电喷射分配阀的设计与性能分析
IF 2.7 3区 材料科学
Journal of Intelligent Material Systems and Structures Pub Date : 2024-04-17 DOI: 10.1177/1045389x241240800
Yihong Shi, Annan Huang, Bo Fu
{"title":"Design and performance analysis of a piezoelectric jetting dispensing valve","authors":"Yihong Shi, Annan Huang, Bo Fu","doi":"10.1177/1045389x241240800","DOIUrl":"https://doi.org/10.1177/1045389x241240800","url":null,"abstract":"In order to meet the requirements of high frequency, high precision, and micro-scale dispensing in the field of microelectronics packaging, a piezoelectric jetting dispensing valve based on two-stage displacement amplifying mechanism was proposed. First, the overall structure and working principle of the proposed piezoelectric jetting valve were described. The displacement amplifying mechanism was designed, and the mathematical relationship between the output displacement and the structural parameters was established. In addition, the performance and the structural size of the displacement amplifying mechanism were analyzed and optimized by using the finite element analysis software. The influences of driving pressure, glue viscosity, needle displacement, and other parameters on droplet diameter and jetting velocity in the process of dispensing were simulated and analyzed. In order to obtain the optimal nozzle structure, the changing curves of glue flowing velocity with different nozzle seal forms, nozzle cone angles, and outlet inner diameters were compared and analyzed. Finally, the prototype of the piezoelectric jetting dispensing valve was machined, and experimental study was performed. The influence laws of driving pressure, glue viscosity, driving voltage, and other parameters on the diameter of droplet were explored. The performance of the prototype was evaluated from three aspects of dispensing frequency, consistency, and minimum dispensing droplet diameter. Results show that the highest dispensing frequency is 230 Hz, the deviation of dispensing consistency is ±8.77%, and the minimum dispensing droplet diameter is 0.54 mm. The experimental results verify the high frequency, consistency, and micro-scale dispensing performance of the piezoelectric jetting dispensing valve based on the displacement amplifying mechanism, which provides a reference for the research of piezoelectric high-frequency jetting dispensing.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"81 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140610831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An electromechanical impedance measurement-based solution for monitoring fresh concrete maturity 基于机电阻抗测量的新拌混凝土成熟度监测解决方案
IF 2.7 3区 材料科学
Journal of Intelligent Material Systems and Structures Pub Date : 2024-04-09 DOI: 10.1177/1045389x241241599
Guobiao Hu, Yaowen Yang, Lipi Mohanty, Soungho Chae, Kohsuke Ishizeki, Lihua Tang
{"title":"An electromechanical impedance measurement-based solution for monitoring fresh concrete maturity","authors":"Guobiao Hu, Yaowen Yang, Lipi Mohanty, Soungho Chae, Kohsuke Ishizeki, Lihua Tang","doi":"10.1177/1045389x241241599","DOIUrl":"https://doi.org/10.1177/1045389x241241599","url":null,"abstract":"This paper proposes an electromechanical impedance measurement (EIM)-based solution for monitoring concrete maturity that refers to concrete strength development at the early stage. A smart aggregate (SMA) that consists of a waterproofed piezoelectric patch is developed. The working principle is explained based on the impedance theory of an electromechanically coupled system. A finite element (FE) model of the EIM-SMA unit is established. The stiffness of the applied spring foundation is varied to emulate the concrete hardening process. The simulation results reveal that a peak located between 60 and 70 kHz in the impedance plot could be used as an indication to reflect the stiffness variation of the spring foundation. A 3D-printed mold is designed for rapid production of the EIM-SMA units. In the experiment, two sample EIM-SMA units are used to monitor fresh concrete maturity in the first 6 h after casting. The results of the two sample EIM-SMA units agreed well. The experimental results matched the simulation prediction. Compared to a bar-dropping test that is widely adopted at construction sites, the impedance evolution of an EIM-SMA unit is much smoother and has better monotonicity. In general, the proposed method has been proven to be a reliable solution to monitor the maturity development of concrete.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"10 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140576718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topology optimization structure design of shape memory alloy with multiple constraints 具有多重约束条件的形状记忆合金拓扑优化结构设计
IF 2.7 3区 材料科学
Journal of Intelligent Material Systems and Structures Pub Date : 2024-04-03 DOI: 10.1177/1045389x241237581
Xingkun Dong, Xiangjun Jiang, Peng Li, Tao Niu, Yaoqi Wang, Jiahuan Zhang
{"title":"Topology optimization structure design of shape memory alloy with multiple constraints","authors":"Xingkun Dong, Xiangjun Jiang, Peng Li, Tao Niu, Yaoqi Wang, Jiahuan Zhang","doi":"10.1177/1045389x241237581","DOIUrl":"https://doi.org/10.1177/1045389x241237581","url":null,"abstract":"As an emerging functional material, shape memory alloy (SMA) exhibits remarkable mechanical properties and finds diverse applications across industries. This paper presents a topology optimization framework based on the bi-directional evolutionary structural optimization (BESO) method for designing SMA structures, which maximizes structural stiffness under multiple constraints of specified volume fraction, displacement, and fundamental frequency. A phenomenological constitutive model is utilized to simulate the mechanical behavior of SMA accurately. The unit virtual load method is employed to determine sensitivities. Several optimized SMA beam structures and simply-supported cube structures are designed under different thermal-mechanical loads, and their displacement, mean compliance, and fundamental frequency are evaluated throughout the optimization process. The results demonstrate that the proposed framework successfully customizes the SMA topology structure with adjustable displacement and fundamental frequency, and the optimized schemes exhibit more considerable deformation and more uniform mechanical properties than their initial counterparts. The proposed framework has higher computational efficiency than the traditional SIMP-based SMA topology optimization design method.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"102 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140576505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovative precast prestressed concrete truss system using shape memory alloys and conventional steel 使用形状记忆合金和传统钢材的创新型预制预应力混凝土桁架系统
IF 2.7 3区 材料科学
Journal of Intelligent Material Systems and Structures Pub Date : 2024-04-02 DOI: 10.1177/1045389x241239701
Minsoo Sung, Bassem Andrawes
{"title":"Innovative precast prestressed concrete truss system using shape memory alloys and conventional steel","authors":"Minsoo Sung, Bassem Andrawes","doi":"10.1177/1045389x241239701","DOIUrl":"https://doi.org/10.1177/1045389x241239701","url":null,"abstract":"Truss systems are mainly made with steel due to their lightweight, high strength in both compression and tension, and ease of manufacture. Concrete truss systems on the other hand have not been widely used in the construction industry because of its weak strength in tension. In this study, a concrete truss system prestressed with a conventional prestressing system and shape memory alloy (SMA) is proposed, and its sustainability is evaluated by estimating the embodied carbon footprint of the proposed system. The bottom concrete chord of the Howe truss is prestressed with conventional high-strength steel (HSS) reinforcement using mechanical tensioning, and the vertical elements are prestressed with SMA bars. The embodied carbon footprint of the FeMnSi SMA bar is evaluated by comparing it with the HSS reinforcements in chemical components and manufacturing processes. The concrete truss is designed and numerically validated for the concrete bridge girder application to satisfy the American Association of State Highway and Transportation Officials (AASHTO) service and strength limit states. The designed concrete truss satisfies the AASHTO service and strength limit states with 37.3% less total weight and 25.9% less carbon emissions than the reference model, which is as per the AASHTO type 2 I-girder.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"41 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140576509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvement of energy conversion efficiency in traveling wave rotary ultrasonic motor by increasing friction coefficient 通过增加摩擦系数提高行波旋转超声波电机的能量转换效率
IF 2.7 3区 材料科学
Journal of Intelligent Material Systems and Structures Pub Date : 2024-03-26 DOI: 10.1177/1045389x241237835
Hucheng Chen, Hongli Ji, Jinhao Qiu
{"title":"Improvement of energy conversion efficiency in traveling wave rotary ultrasonic motor by increasing friction coefficient","authors":"Hucheng Chen, Hongli Ji, Jinhao Qiu","doi":"10.1177/1045389x241237835","DOIUrl":"https://doi.org/10.1177/1045389x241237835","url":null,"abstract":"This article introduces a method of enhancing the energy conversion efficiency of a traveling wave rotary ultrasonic motor with a flexible rotor by increasing the friction coefficient at the stator–rotor interface. The increased friction coefficient leads to improvements in energy conversion efficiency by increasing the output power and reducing friction loss power. Experimental verification showed that the friction coefficient in the interface increased from 0.21 to 0.32, the maximum energy conversion efficiency increased from 36.8% to 46.3%, and the interface friction loss was reduced.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"20 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140311347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic mechanical response and deformation mechanism of poly (ε-caprolactone) (PCL) / epoxy resin(EP) shape memory polymer composites 聚(ε-己内酯)(PCL)/环氧树脂(EP)形状记忆聚合物复合材料的动态力学响应和变形机理
IF 2.7 3区 材料科学
Journal of Intelligent Material Systems and Structures Pub Date : 2024-03-20 DOI: 10.1177/1045389x241233810
Yongjian Wei, Zhuhua Tan
{"title":"Dynamic mechanical response and deformation mechanism of poly (ε-caprolactone) (PCL) / epoxy resin(EP) shape memory polymer composites","authors":"Yongjian Wei, Zhuhua Tan","doi":"10.1177/1045389x241233810","DOIUrl":"https://doi.org/10.1177/1045389x241233810","url":null,"abstract":"The dynamic mechanical response and deformation mechanism of poly (ε-caprolactone) (PCL) and epoxy resins shape memory polymer (SMP) composites were investigated in this paper. The SMP composites were a blend of PCL and epoxy resins by using the facile melt-mixing method. The distribution of PCL in the composites was observed by SEM, which was in from microparticle morphology to continuous morphology with the increasing PCL content. And the dynamic mechanical analyzer (DMA) tests were performed to demonstrate the viscoelastic properties and shape memory effect of the PCL/EP composites. Based on the above characterization of PCL/EP composites, the split Hopkinson pressure bar (SHPB) tests were performed to study the dynamic mechanical properties at the strain rates of 4000/s to 7000/s. The results showed that the flow stress increased with the increasing strain rate, which exhibited an obvious sensitivity to strain rate. However, the flow stress of PCL/EP decreases with the increasing PCL content due to the low strength of PCL. And PCL/EP composites failed in a typical ductile failure mode under quasi-static loading, whereas an excellent plastic deformation ability was observed at high strain rates, which was attributed to the heat generated by the plastic work during the adiabatic compression. Combining with the experimental results, the corresponding deformation mechanism was also discussed.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"63 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140201616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信