用形状记忆线驱动平行机械手的轨迹跟踪控制

IF 2.4 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
M Banu Sundareswari, K Dhanalakshmi, A Vimala Starbino, G Then Mozhi
{"title":"用形状记忆线驱动平行机械手的轨迹跟踪控制","authors":"M Banu Sundareswari, K Dhanalakshmi, A Vimala Starbino, G Then Mozhi","doi":"10.1177/1045389x241239371","DOIUrl":null,"url":null,"abstract":"This study describes the design of a parallel spatial manipulator with four degrees of freedom actuated with shape memory alloy (SMA) wire to validate the use of SMA in complicated mechatronics systems. The manipulator has a closed kinematic structure, which includes a fixed base and a moving square platform (end effector). The four arms of the manipulator are SMA wires fastened between the fixed base and the end effector. SMA wire-based actuators replace bulky conventional revolute actuators. This work spotlights the development of an actuator model, dimensional analysis, and design of cascade control strategies of various PID and sliding mode controller in their integral and fractional order configurations. Experimental evaluation of the actuator is performed through trajectory tracking to quantify the different controller configurations. The experimental results indicate that the parallel manipulator associated with SMA wire actuators is the best alternative to conventional motion stages for highly precise micro-positioning and tracking applications in the fields of 3D printing, intricate surgical operations, the medical and pharmaceutical industries, and flight and gaming simulators.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"46 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trajectory tracking control of parallel manipulator actuated with shape memory wire\",\"authors\":\"M Banu Sundareswari, K Dhanalakshmi, A Vimala Starbino, G Then Mozhi\",\"doi\":\"10.1177/1045389x241239371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study describes the design of a parallel spatial manipulator with four degrees of freedom actuated with shape memory alloy (SMA) wire to validate the use of SMA in complicated mechatronics systems. The manipulator has a closed kinematic structure, which includes a fixed base and a moving square platform (end effector). The four arms of the manipulator are SMA wires fastened between the fixed base and the end effector. SMA wire-based actuators replace bulky conventional revolute actuators. This work spotlights the development of an actuator model, dimensional analysis, and design of cascade control strategies of various PID and sliding mode controller in their integral and fractional order configurations. Experimental evaluation of the actuator is performed through trajectory tracking to quantify the different controller configurations. The experimental results indicate that the parallel manipulator associated with SMA wire actuators is the best alternative to conventional motion stages for highly precise micro-positioning and tracking applications in the fields of 3D printing, intricate surgical operations, the medical and pharmaceutical industries, and flight and gaming simulators.\",\"PeriodicalId\":16121,\"journal\":{\"name\":\"Journal of Intelligent Material Systems and Structures\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Material Systems and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/1045389x241239371\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389x241239371","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了利用形状记忆合金(SMA)线材驱动的四自由度平行空间机械手的设计,以验证 SMA 在复杂机电一体化系统中的应用。该机械手采用封闭式运动结构,包括一个固定基座和一个移动方形平台(末端效应器)。机械手的四个臂是固定在固定基座和末端效应器之间的 SMA 线。基于 SMA 线的执行器取代了笨重的传统旋转执行器。本作品重点介绍了致动器模型的开发、尺寸分析以及各种 PID 和滑动模式控制器在积分阶和分数阶配置下的级联控制策略的设计。通过轨迹跟踪对致动器进行了实验评估,以量化不同的控制器配置。实验结果表明,在 3D 打印、复杂的外科手术、医疗和制药行业以及飞行和游戏模拟器等领域的高精度微定位和跟踪应用中,与 SMA 线执行器相关的并联机械手是传统运动平台的最佳替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trajectory tracking control of parallel manipulator actuated with shape memory wire
This study describes the design of a parallel spatial manipulator with four degrees of freedom actuated with shape memory alloy (SMA) wire to validate the use of SMA in complicated mechatronics systems. The manipulator has a closed kinematic structure, which includes a fixed base and a moving square platform (end effector). The four arms of the manipulator are SMA wires fastened between the fixed base and the end effector. SMA wire-based actuators replace bulky conventional revolute actuators. This work spotlights the development of an actuator model, dimensional analysis, and design of cascade control strategies of various PID and sliding mode controller in their integral and fractional order configurations. Experimental evaluation of the actuator is performed through trajectory tracking to quantify the different controller configurations. The experimental results indicate that the parallel manipulator associated with SMA wire actuators is the best alternative to conventional motion stages for highly precise micro-positioning and tracking applications in the fields of 3D printing, intricate surgical operations, the medical and pharmaceutical industries, and flight and gaming simulators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Material Systems and Structures
Journal of Intelligent Material Systems and Structures 工程技术-材料科学:综合
CiteScore
5.40
自引率
11.10%
发文量
126
审稿时长
4.7 months
期刊介绍: The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信