Design, analysis, and experimental investigations of an asymmetrical under-actuated micro-gripper

IF 2.4 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhigang Wu, Yu Wang, Min Chen, Bingxiao Ding
{"title":"Design, analysis, and experimental investigations of an asymmetrical under-actuated micro-gripper","authors":"Zhigang Wu, Yu Wang, Min Chen, Bingxiao Ding","doi":"10.1177/1045389x241246827","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new asymmetrical under-actuated micro-gripper which can perform twisting and gripping operation to the target simultaneously actuated by a single piezoelectric actuator. Two improved hybrid amplification mechanisms were designed integrated with three different flexure hinges to enhance dynamic performances. Kinematics and dynamics models of the micro-gripper including input stiffness, displacement amplification ratio, and natural frequency based on pseudo-rigid-body method and Lagrange’s equations were derived. Proposed models were evaluated by finite element simulation studies. Experimental results shown that our designed micro-gripper possesses good performance in terms of clamping reliability and dynamic response.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"212 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389x241246827","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a new asymmetrical under-actuated micro-gripper which can perform twisting and gripping operation to the target simultaneously actuated by a single piezoelectric actuator. Two improved hybrid amplification mechanisms were designed integrated with three different flexure hinges to enhance dynamic performances. Kinematics and dynamics models of the micro-gripper including input stiffness, displacement amplification ratio, and natural frequency based on pseudo-rigid-body method and Lagrange’s equations were derived. Proposed models were evaluated by finite element simulation studies. Experimental results shown that our designed micro-gripper possesses good performance in terms of clamping reliability and dynamic response.
非对称欠动微型夹持器的设计、分析和实验研究
在本文中,我们介绍了一种新型非对称欠动微型机械手,它可以通过单个压电致动器同时对目标执行扭转和抓取操作。为提高动态性能,设计了两种改进的混合放大机构,并与三种不同的挠性铰链集成。基于伪刚体方法和拉格朗日方程,推导出了微型夹持器的运动学和动力学模型,包括输入刚度、位移放大率和固有频率。通过有限元模拟研究对所提出的模型进行了评估。实验结果表明,我们设计的微型夹具在夹持可靠性和动态响应方面具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Intelligent Material Systems and Structures
Journal of Intelligent Material Systems and Structures 工程技术-材料科学:综合
CiteScore
5.40
自引率
11.10%
发文量
126
审稿时长
4.7 months
期刊介绍: The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信