{"title":"The distribution of regions of homozygosity (ROH) among consanguineous populations-implications for a routine genetic counseling service.","authors":"Chen Gafni-Amsalem, Nasim Warwar, Morad Khayat, Yasmin Tatour, Olfat Abuleil-Zuabi, Salvatore Campisi-Pinto, Shai Carmi, Stavit A Shalev","doi":"10.1038/s10038-024-01303-z","DOIUrl":"https://doi.org/10.1038/s10038-024-01303-z","url":null,"abstract":"<p><p>Regions of homozygosity (ROH) increase the risk of recessive disorders, and guidelines recommend reporting of excessive ROH in prenatal testing. However, ROH are common in populations that practice endogamy or consanguinity, and cutoffs for reporting ROH in such populations may not be evidence-based. We reviewed prenatal testing results (based on cytogenetic microarrays) from 2191 pregnancies in the Jewish and non-Jewish populations of Northern Israel and estimated the prevalence of ROH according to self-reported ethnicity and parental relationships. The proportion of the genome in ROH, ROH rate, was higher in non-Jews [Mean (SD) = 2.91% (3.92%); max = 25.54%; N = 689] than in Jews [Mean (SD) = 0.81% (0.49%); max = 3.93%; N = 1502]. In the non-Jewish populations, consanguineous marriages had the highest ROH rates [Mean (SD) = 7.14% (4.55%), N = 217], followed by endogamous [Mean (SD) = 1.13% (1.09%), N = 283] and non-endogamous [Mean (SD) = 0.69%(0. 56%), N = 189] marriages. ROH rates were greater than 5%, the ACMG-recommended cutoff, in 149/689 (21.63%) of the non-Jewish samples. Within the Jewish populations, the rates were similar between Ashkenazi, North African, and Middle Eastern Jews, but were higher for six consanguineous unions [Mean (SD) = 2.38% (1.23%)] and when spouses belonged to the same sub-population. Given the high ROH rates we observed in some subjects, we suggest that assessing the risk for recessive conditions in consanguineous/endogamous populations should be done before the first pregnancy, through genetic counseling and sequencing. Such an approach will: (1) identify couples who are at risk and counsel them on reproductive options; and (2) avoid the stress that couples who are not at risk may experience due to a prenatal ROH report.</p>","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Loisa Dana Bonde, Ibrahim M Abdelrazek, Lara Seif, Malik Alawi, Khaled Matrawy, Karim Nabil, Ebtesam Abdalla, Kerstin Kutsche, Frederike Leonie Harms
{"title":"Homozygous synonymous FAM111A variant underlies an autosomal recessive form of Kenny-Caffey syndrome.","authors":"Loisa Dana Bonde, Ibrahim M Abdelrazek, Lara Seif, Malik Alawi, Khaled Matrawy, Karim Nabil, Ebtesam Abdalla, Kerstin Kutsche, Frederike Leonie Harms","doi":"10.1038/s10038-024-01301-1","DOIUrl":"10.1038/s10038-024-01301-1","url":null,"abstract":"<p><p>FAM111A (family with sequence similarity 111 member A) is a serine protease and removes covalent DNA-protein cross-links during DNA replication. Heterozygous gain-of-function variants in FAM111A cause skeletal dysplasias, such as the perinatal lethal osteocraniostenosis and the milder Kenny-Caffey syndrome (KCS). We report two siblings born to consanguineous parents with dysmorphic craniofacial features, postnatal growth retardation, ophthalmologic manifestations, hair and nail anomalies, and skeletal abnormalities such as thickened cortex and stenosis of the medullary cavity of the long bones suggestive of KCS. Using exome sequencing, a homozygous synonymous FAM111A variant, NM_001312909.2:c.81 G > A; p.Pro27=, that affects the last base of the exon and is predicted to alter FAM111A pre-mRNA splicing, was identified in both siblings. We identified aberrantly spliced FAM111A transcripts, reduced FAM111A mRNA levels, and near-complete absence of FAM111A protein in fibroblasts of both patients. After treatment of patient and control fibroblasts with different concentrations of camptothecin that induces covalent DNA-protein cross-links, we observed a tendency towards a reduced proportion of metabolically active cells in patient compared to control fibroblasts. However, under these culture conditions, we did not find consistent and statistically significant differences in cell cycle progression and apoptotic cell death between patient and control cells. Our findings show that FAM111A deficiency underlies an autosomal recessive form of FAM111A-related KCS. Based on our results and published data, we hypothesize that loss of FAM111A and FAM111A protease hyperactivity, as observed for gain-of-function patient-variant proteins, may converge on a similar pathomechanism underlying skeletal dysplasias.</p>","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"First description of novel compound heterozygous mutations in HYCC1: clinical evaluations and molecular analysis in patient with hypomyelinating leukodystrophy-5 with retrospective view.","authors":"Abir Ben Issa, Fatma Kamoun, Boudour Khabou, Wafa Bouchaala, Faiza Fakhfakh, Chahnez Triki","doi":"10.1038/s10038-024-01300-2","DOIUrl":"https://doi.org/10.1038/s10038-024-01300-2","url":null,"abstract":"<p><p>Hypomyelinating leukodystrophy-5 (HLD5) is a rare autosomal recessive hypomyelination disorder characterized by congenital cataract, progressive neurologic impairment, and myelin deficiency in the central and peripheral nervous system, caused by mutations in the HYCC1 gene. Here we report a 23-year-old girl with HLD5 from unrelated families. Molecular analysis was performed using sequence screening of the HYCC1 gene. In addition, in silico prediction tools and molecular investigation were used to predict the structural effect of the mutations. Results showed a novel compound heterozygous mutation in the HYCC1 gene. Moreover, in silico tools and 3D structural modeling revealed that c.521C > A (p.Ala174Glu) and c.652C > G (p.Gln218Glu) mutations could affect the structure, stability, and conformational analyses in the N-ter domain of the Hyccin protein. We also, we compared the phenotype of our patient with those of previously reported cases with HLD5 syndrome and our findings indicate the absence of reliable genotype-phenotype correlations. To the best of our knowledge, this is the first report describing a Tunisian HLD5 patient with compound heterozygous mutations (c.521C > A (p.Ala174Glu) and c.652C > G (p.Gln218Glu)) in HYCC1 gene.</p>","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ghada M H Abdel-Salam, Asmaa Esmail, Dina Nagy, Sherif F Abdel-Ghafar, Mohamed S Abdel-Hamid
{"title":"Novel homozygous ESAM variants in two families with perinatal strokes showing variable neuroradiologic and clinical findings.","authors":"Ghada M H Abdel-Salam, Asmaa Esmail, Dina Nagy, Sherif F Abdel-Ghafar, Mohamed S Abdel-Hamid","doi":"10.1038/s10038-024-01297-8","DOIUrl":"https://doi.org/10.1038/s10038-024-01297-8","url":null,"abstract":"<p><p>Biallelic loss of function variants in ESAM (endothelial cell adhesion molecule) have recently been reported in 14 individuals (9 families) presenting with prenatal intracranial hemorrhage. Here, we describe four patients from two unrelated families in whom three of them presented with variable onset encephalopathy and seizures while one only displayed profound delay without seizures. Brain MRI showed variable onset intracranial hemorrhage that evolved to hydrocephalus in 3 patients, whereas hemosiderin deposits, white matter volume loss, and porencephalic cysts were noted in one patient. Unlike the majority of described cases, the youngest brother of the first family did not show microcephaly and failure to thrive. Exome sequencing identified two novel homozygous ESAM variants. A splice variant (c.731-2A>G) was identified in one family which was confirmed by investigating the patient's mRNA to result in exon skipping and early protein truncation. In addition, a missense variant (c.561G>C; p.Trp187Cys) was identified in the other family, which is the first disease causing missense variant to be described in patients with ESAM deficient phenotype. In addition, a maternally inherited pathogenic MC4R variant (c.811T>C; p.Cys271 Arg) was also identified in the youngest brother of the first family. Variants in the MC4R gene are associated with a non-syndromic form of obesity that could explain the unusual macrocephaly and obesity. Our work establishes ESAM as a tight junction gene that can present with variable neuroradiological and clinical phenotypes when mutated. Moreover, it refines the phenotype of this ultrarare syndrome and extends the number and type of variants described to date.</p>","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biallelic missense CEP55 variants cause prenatal MARCH syndrome.","authors":"Li Fu, Yuka Yamamoto, Rie Seyama, Nana Matsuzawa, Mariko Nagaoka, Takashi Yao, Keisuke Hamada, Kazuhiro Ogata, Toshifumi Suzuki, Naomi Tsuchida, Yuri Uchiyama, Eriko Koshimizu, Kazuharu Misawa, Satoko Miyatake, Takeshi Mizuguchi, Atsushi Fujita, Atsuo Itakura, Naomichi Matsumoto","doi":"10.1038/s10038-024-01298-7","DOIUrl":"https://doi.org/10.1038/s10038-024-01298-7","url":null,"abstract":"<p><p>CEP55 encodes centrosomal protein 55 kDa, which plays a crucial role in mitosis, particularly cytokinesis. Biallelic CEP55 variants cause MARCH syndrome (multinucleated neurons, anhydramnios, renal dysplasia, cerebellar hypoplasia and hydranencephaly). Here, we describe a Japanese family with two affected siblings harboring novel compound heterozygous CEP55 variants, NM_001127182: c.[1357 C > T];[1358 G > A] p.[(Arg453Cys)];[(Arg453His)]. Both presented clinically with typical lethal MARCH syndrome. Although a combination of missense and nonsense variants has been reported previously, this is the first report of biallelic missense CEP55 variants. These variants biallelically affected the same amino acid, Arg453, in the last 40 amino acids of CEP55. These residues are functionally important for CEP55 localization to the midbody during cell division, and may be associated with severe clinical outcomes. More cases of pathogenic CEP55 variants are needed to establish the genotype-phenotype correlation.</p>","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Two-hit mutation causes Wilms tumor in an individual with FBXW7-related neurodevelopmental syndrome.","authors":"Yoko Saito, Dai Keino, Yukiko Kuroda, Yumi Enomoto, Takuya Naruto, Yukichi Tanaka, Mio Tanaka, Hidehito Usui, Norihiko Kitagawa, Masakatsu Yanagimachi, Kenji Kurosawa","doi":"10.1038/s10038-024-01299-6","DOIUrl":"https://doi.org/10.1038/s10038-024-01299-6","url":null,"abstract":"<p><p>FBXW7 (F-box and WD-repeat domain-containing 7) is a tumor suppressor gene, and its germline variants have been causally linked to Wilms tumors. Furthermore, germline variants of FBXW7 have also been implicated in a neurodevelopmental syndrome. However, little is known regarding the occurrence of Wilms tumor in patients with FBXW7-related neurodevelopmental syndrome. We identified a novel constitutional pathogenic variant of FBXW7 in a patient with intellectual disability, who also developed Wilms tumor. The variant was derived from his apparently normal mother, and was also detected in his sister who exhibited developmental delay. Furthermore, we detected a somatic nonsense variant on the paternal allele of FBXW7 in the tumor DNA. These results suggest that the development of Wilms tumor along with FBXW7-related neurodevelopmental syndrome follows the two-hit model, which needs to be validated to establish appropriate follow-up management and tumor surveillance.</p>","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonghyun Kim, Fuzuki Mizuno, Takayuki Matsushita, Masami Matsushita, Saki Aoto, Koji Ishiya, Mami Kamio, Izumi Naka, Michiko Hayashi, Kunihiko Kurosaki, Shintaroh Ueda, Jun Ohashi
{"title":"Genetic analysis of a Yayoi individual from the Doigahama site provides insights into the origins of immigrants to the Japanese Archipelago.","authors":"Jonghyun Kim, Fuzuki Mizuno, Takayuki Matsushita, Masami Matsushita, Saki Aoto, Koji Ishiya, Mami Kamio, Izumi Naka, Michiko Hayashi, Kunihiko Kurosaki, Shintaroh Ueda, Jun Ohashi","doi":"10.1038/s10038-024-01295-w","DOIUrl":"https://doi.org/10.1038/s10038-024-01295-w","url":null,"abstract":"<p><p>Mainland Japanese have been recognized as having dual ancestry, originating from indigenous Jomon people and immigrants from continental East Eurasia. Although migration from the continent to the Japanese Archipelago continued from the Yayoi to the Kofun period, our understanding of these immigrants, particularly their origins, remains insufficient due to the lack of high-quality genome samples from the Yayoi period, complicating predictions about the admixture process. To address this, we sequenced the whole nuclear genome of a Yayoi individual from the Doigahama site in Yamaguchi prefecture, Japan. A comprehensive population genetic analysis of the Doigahama Yayoi individual, along with ancient and modern populations in East Asia and Northeastern Eurasia, revealed that the Doigahama Yayoi individual, similar to Kofun individuals and modern Mainland Japanese, had three distinct genetic ancestries: Jomon-related, East Asian-related, and Northeastern Siberian-related. Among non-Japanese populations, the Korean population, possessing both East Asian-related and Northeastern Siberian-related ancestries, exhibited the highest degree of genetic similarity to the Doigahama Yayoi individual. The analysis of admixture modeling for Yayoi individuals, Kofun individuals, and modern Japanese respectively supported a two-way admixture model assuming Jomon-related and Korean-related ancestries. These results suggest that between the Yayoi and Kofun periods, the majority of immigrants to the Japanese Archipelago originated primarily from the Korean Peninsula.</p>","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of a method for the imputation of the multi-allelic serotonin-transporter-linked polymorphic region (5-HTTLPR) in the Japanese population.","authors":"Yutaro Yanagida, Izumi Naka, Yutaka Nakachi, Tempei Ikegame, Kiyoto Kasai, Naoto Kajitani, Minoru Takebayashi, Miki Bundo, Jun Ohashi, Kazuya Iwamoto","doi":"10.1038/s10038-024-01296-9","DOIUrl":"https://doi.org/10.1038/s10038-024-01296-9","url":null,"abstract":"<p><p>Serotonin-transporter-linked polymorphic region (5-HTTLPR), a variable number of tandem repeats in the promoter region of serotonin transporter gene, is classified into short (S) and long (L) alleles. Initial case-control association studies claiming the risks of the S allele in depression and anxiety were not completely supported by recent studies. However, most studies, especially those on East Asian populations, have overlooked the complexity of 5-HTTLPR, which involves multiple different alleles with distinct functional properties. To address this issue, distinguishing multiple 5-HTTLPR alleles is essential. Here, using the 5-HTTLPR genotypes previously determined by exhaustive Sanger sequencing of approximately 1,500 Japanese subjects and their comprehensive SNP data, we constructed a method for 5-HTTLPR genotype imputation. We identified 28 tag SNPs for the imputation of four major 5-HTTLPR alleles, which collectively account for 97.6% of 5-HTTLPR alleles in the Japanese population. Our imputation method, achieved an accuracy of 0.872 in cross-validation, will contribute to association analysis of 5-HTTLPR in the Japanese subjects.</p>","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142348225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction: Association study of GBA1 variants with MSA based on comprehensive sequence analysis -Pitfalls in short-read sequence analysis depending on the human reference genome-","authors":"Kenta Orimo, Jun Mitsui, Takashi Matsukawa, Masaki Tanaka, Junko Nomoto, Hiroyuki Ishiura, Yosuke Omae, Yosuke Kawai, Katsushi Tokunaga, NCBN Controls WGS Consortium, Tatsushi Toda, Shoji Tsuji","doi":"10.1038/s10038-024-01293-y","DOIUrl":"10.1038/s10038-024-01293-y","url":null,"abstract":"","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":"69 12","pages":"679-680"},"PeriodicalIF":2.6,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s10038-024-01293-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142289278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biallelic TXNDC15 variants associated with Joubert syndrome-related molar tooth sign and forebrain malformation.","authors":"Yukiko Kuroda, Tamaki Ikegawa, Ayumi Kato, Noriko Aida, Takuya Naruto, Kenji Kurosawa","doi":"10.1038/s10038-024-01290-1","DOIUrl":"https://doi.org/10.1038/s10038-024-01290-1","url":null,"abstract":"<p><p>TXNDC15 encodes thioredoxin domain-containing protein 15, a protein disulfide isomerase that plays a role in ciliogenesis. Biallelic TXNDC15 variants have been reported in six individuals of Meckel syndrome (MKS) with perinatal lethal phenotypes, but have not been reported in patients with Joubert syndrome (JS). Here, we describe a 1-year-old female patient with compound heterozygous TXNDC15 variants demonstrating cerebellar vermis hypoplasia with the molar tooth sign, mild holoprosencephaly, and cortical abnormalities. She had severe developmental delay and epilepsy. Her clinical features were similar to those of JS, but distinctive forebrain abnormalities were also noted including mild holoprosencephaly and cortical abnormalities, which have been reported in a severe form of ciliopathy. Biallelic TXNDC15 variants manifest as overlapping phenotypes of JS and MKS, including the molar tooth sign, cortical dysgenesis, and mild holoprosencephaly. This report supports the hypothesis that JS and MKS are spectrum ciliopathy disorders with overlapping causative genes and hypomorphic TXNDC15 variants might contribute to JS.</p>","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142289277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}