由软骨素/硫酸皮肤素生物合成异常引起的先天性疾病。

IF 2.5 3区 生物学 Q2 GENETICS & HEREDITY
Tadahisa Mikami, Shuji Mizumoto, Hiroshi Kitagawa, Shuhei Yamada
{"title":"由软骨素/硫酸皮肤素生物合成异常引起的先天性疾病。","authors":"Tadahisa Mikami, Shuji Mizumoto, Hiroshi Kitagawa, Shuhei Yamada","doi":"10.1038/s10038-025-01396-0","DOIUrl":null,"url":null,"abstract":"<p><p>Chondroitin sulfate (CS)/dermatan sulfate (DS) proteoglycans that play indispensable roles in multiple physiological processes, including cell proliferation, cell adhesion, development, neuronal guidance, and cartilage formation. Depletion of CS/DS caused by biosynthetic enzyme loss of function impairs these processes and results in embryonic lethality. However, some individuals with mutant enzymes survive and exhibit severe phenotypes. These rare hereditary diseases have been discovered and characterized in recent decades because of marked advances in next-generation sequencing technology. In this review, CS/DS-related inherited diseases caused by aberrations in both CS/DS backbone synthesis, as well as their sulfation and/or epimerization, are comprehensively summarized and their pathogenesis discussed.</p>","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Congenital disorders caused by aberrations in the biosynthesis of chondroitin/dermatan sulfate.\",\"authors\":\"Tadahisa Mikami, Shuji Mizumoto, Hiroshi Kitagawa, Shuhei Yamada\",\"doi\":\"10.1038/s10038-025-01396-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chondroitin sulfate (CS)/dermatan sulfate (DS) proteoglycans that play indispensable roles in multiple physiological processes, including cell proliferation, cell adhesion, development, neuronal guidance, and cartilage formation. Depletion of CS/DS caused by biosynthetic enzyme loss of function impairs these processes and results in embryonic lethality. However, some individuals with mutant enzymes survive and exhibit severe phenotypes. These rare hereditary diseases have been discovered and characterized in recent decades because of marked advances in next-generation sequencing technology. In this review, CS/DS-related inherited diseases caused by aberrations in both CS/DS backbone synthesis, as well as their sulfation and/or epimerization, are comprehensively summarized and their pathogenesis discussed.</p>\",\"PeriodicalId\":16077,\"journal\":{\"name\":\"Journal of Human Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Human Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s10038-025-01396-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s10038-025-01396-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

硫酸软骨素(CS)/硫酸皮肤聚糖(DS)蛋白聚糖在细胞增殖、细胞粘附、发育、神经元引导和软骨形成等多种生理过程中发挥着不可或缺的作用。由生物合成酶功能丧失引起的CS/DS耗竭会损害这些过程并导致胚胎致死。然而,一些具有突变酶的个体存活下来并表现出严重的表型。近几十年来,由于下一代测序技术的显著进步,这些罕见的遗传性疾病已经被发现和表征。本文综述了由CS/DS主链合成异常及其硫酸化和/或外聚异构化引起的CS/DS相关遗传病的研究进展,并对其发病机制进行了探讨。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Congenital disorders caused by aberrations in the biosynthesis of chondroitin/dermatan sulfate.

Chondroitin sulfate (CS)/dermatan sulfate (DS) proteoglycans that play indispensable roles in multiple physiological processes, including cell proliferation, cell adhesion, development, neuronal guidance, and cartilage formation. Depletion of CS/DS caused by biosynthetic enzyme loss of function impairs these processes and results in embryonic lethality. However, some individuals with mutant enzymes survive and exhibit severe phenotypes. These rare hereditary diseases have been discovered and characterized in recent decades because of marked advances in next-generation sequencing technology. In this review, CS/DS-related inherited diseases caused by aberrations in both CS/DS backbone synthesis, as well as their sulfation and/or epimerization, are comprehensively summarized and their pathogenesis discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Human Genetics
Journal of Human Genetics 生物-遗传学
CiteScore
7.20
自引率
0.00%
发文量
101
审稿时长
4-8 weeks
期刊介绍: The Journal of Human Genetics is an international journal publishing articles on human genetics, including medical genetics and human genome analysis. It covers all aspects of human genetics, including molecular genetics, clinical genetics, behavioral genetics, immunogenetics, pharmacogenomics, population genetics, functional genomics, epigenetics, genetic counseling and gene therapy. Articles on the following areas are especially welcome: genetic factors of monogenic and complex disorders, genome-wide association studies, genetic epidemiology, cancer genetics, personal genomics, genotype-phenotype relationships and genome diversity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信