{"title":"Augmenting cost-effectiveness in clinical diagnosis using extended whole-exome sequencing: SNVs, SVs, and beyond.","authors":"Fuyuki Miya, Daisuke Nakato, Hisato Suzuki, Mamiko Yamada, Daisuke Watanabe, Toshiki Takenouchi, Kenjiro Kosaki","doi":"10.1038/s10038-025-01403-4","DOIUrl":null,"url":null,"abstract":"<p><p>In standard short-read whole-exome sequencing (WES), capture probes are typically designed to target the protein-coding regions (CDS), and regions outside the exons-except for adjacent intronic sequences-are rarely sequenced. Although the majority of known pathogenic variants reside within the CDS as nonsynonymous variants, some disease-causing variants are located in regions that are difficult to detect by WES alone, such as deep intronic variants and structural variants, often requiring whole-genome sequencing (WGS) for detection. Moreover, WES has limitations in reliably identifying pathogenic variants within mitochondrial DNA or repetitive regions. Here, we propose a strategy to improve the diagnostic yield in a cost-effective manner by expanding the target design of WES beyond the CDS. As an illustrative example, we experimentally validated an extended WES approach covering intronic and untranslated regions (UTRs) of 188 genes listed in the Japanese public health insurance-covered multiple gene testing, intronic and UTRs of 81 genes listed in ACMG Secondary Findings (SF) v3.2, and 70 repeat regions associated with diseases. Additionally, the entire mitochondrial genome was targeted. We demonstrate the coverage of these extended regions based on experimental data and present case examples in which previously diagnosed pathogenic variants located outside the CDS were successfully detected using this approach. This strategy enables a substantial increase in the chance of achieving a definitive diagnosis for patients using WES alone, without requiring WGS, at a cost comparable to conventional WES. Our method has the potential to significantly shorten the diagnostic odyssey and represents a valuable approach in clinical genomics.</p>","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s10038-025-01403-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
In standard short-read whole-exome sequencing (WES), capture probes are typically designed to target the protein-coding regions (CDS), and regions outside the exons-except for adjacent intronic sequences-are rarely sequenced. Although the majority of known pathogenic variants reside within the CDS as nonsynonymous variants, some disease-causing variants are located in regions that are difficult to detect by WES alone, such as deep intronic variants and structural variants, often requiring whole-genome sequencing (WGS) for detection. Moreover, WES has limitations in reliably identifying pathogenic variants within mitochondrial DNA or repetitive regions. Here, we propose a strategy to improve the diagnostic yield in a cost-effective manner by expanding the target design of WES beyond the CDS. As an illustrative example, we experimentally validated an extended WES approach covering intronic and untranslated regions (UTRs) of 188 genes listed in the Japanese public health insurance-covered multiple gene testing, intronic and UTRs of 81 genes listed in ACMG Secondary Findings (SF) v3.2, and 70 repeat regions associated with diseases. Additionally, the entire mitochondrial genome was targeted. We demonstrate the coverage of these extended regions based on experimental data and present case examples in which previously diagnosed pathogenic variants located outside the CDS were successfully detected using this approach. This strategy enables a substantial increase in the chance of achieving a definitive diagnosis for patients using WES alone, without requiring WGS, at a cost comparable to conventional WES. Our method has the potential to significantly shorten the diagnostic odyssey and represents a valuable approach in clinical genomics.
期刊介绍:
The Journal of Human Genetics is an international journal publishing articles on human genetics, including medical genetics and human genome analysis. It covers all aspects of human genetics, including molecular genetics, clinical genetics, behavioral genetics, immunogenetics, pharmacogenomics, population genetics, functional genomics, epigenetics, genetic counseling and gene therapy.
Articles on the following areas are especially welcome: genetic factors of monogenic and complex disorders, genome-wide association studies, genetic epidemiology, cancer genetics, personal genomics, genotype-phenotype relationships and genome diversity.