{"title":"Experimental study of Fe modified Mn/CeO2 catalyst for simultaneous removal of NO and toluene at low temperature","authors":"Ze-rong HAO , Shuo FENG , Yu-ye XING , Bo-xiong SHEN","doi":"10.1016/S1872-5813(23)60358-5","DOIUrl":"https://doi.org/10.1016/S1872-5813(23)60358-5","url":null,"abstract":"<div><p>A series of Mn/CeO<sub>2</sub> catalysts modified with different Fe contents were prepared by impregnation method and tested for their low-temperature performance for simultaneous de-nitrification and toluene removal. It was found that the Fe<sub>5</sub>Mn/CeO<sub>2</sub> catalyst showed the best catalytic performance and the conversion efficiency of toluene reached 90% at 175 °C and NO conversion reached 90% at 95−300 °C. The physical and chemical properties of the catalysts were characterized by BET, SEM, XRD, XPS, H<sub>2</sub>-TPR, NH<sub>3</sub>-TPD and O<sub>2</sub>-TPD. XPS results showed that the increased content of Ce<sup>3+</sup> and Mn<sup>4+</sup> in the Fe<sub>5</sub>Mn/CeO<sub>2</sub> catalyst promoted the formation of oxygen vacancies and unsaturated chemical bonds, providing more active sites, thus facilitating the efficient removal of NO and toluene at low temperatures. Compared with other catalysts, H<sub>2</sub>-TPR, NH<sub>3</sub>-TPD and O<sub>2</sub>-TPD indicate that Fe<sub>5</sub>Mn/CeO<sub>2</sub> catalyst has great redox ability, stronger acidity and better oxygen migration ability. In addition, this paper explores the effects between selective catalytic reduction (NH<sub>3</sub>-SCR) and catalytic oxidation reaction of toluene over Fe<sub>5</sub>Mn/CeO<sub>2</sub> catalyst. NH<sub>3</sub> preferentially reacts with the active site on the catalyst to inhibit the toluene oxidation process, while NO promotes the toluene removal process. Toluene can promote the NH<sub>3</sub>-SCR process in a certain temperature range. While NO promotes the formation of NO<sub>2</sub>, NO<sub>2</sub> effectively promotes the combination of toluene and active sites, which is conducive to the catalytic oxidation of toluene; The inhibition of toluene on the NH<sub>3</sub>-SCR process weakens with the increase of temperature. At 100 °C, the inhibition of toluene on the NH<sub>3</sub>-SCR process disappears. When the temperature exceeds 225 °C, toluene reacts with NO as a reducing agent and promotes the formation of NO<sub>2</sub>, thus promoting the NH<sub>3</sub>-SCR reaction.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"51 12","pages":"Pages 1866-1878"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138558585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
燃料化学学报Pub Date : 2023-12-01DOI: 10.1016/S1872-5813(23)60363-9
Wei-jie ZHANG , Zhi-peng TIAN , Jia-hao HUANG , Jun-yao WANG , Xiang-long LUO , Chao WANG , Ri-yang SHU , Jian-ping LIU , Ying CHEN
{"title":"Investigation of the promotion effect of metal oxides on the water-gas shift reaction activity over Pt-MOx/CeO2 catalysts for aqueous phase reforming","authors":"Wei-jie ZHANG , Zhi-peng TIAN , Jia-hao HUANG , Jun-yao WANG , Xiang-long LUO , Chao WANG , Ri-yang SHU , Jian-ping LIU , Ying CHEN","doi":"10.1016/S1872-5813(23)60363-9","DOIUrl":"https://doi.org/10.1016/S1872-5813(23)60363-9","url":null,"abstract":"<div><p>Aqueous phase reforming (APR) of methanol is a potential pathway for the effective hydrogen production under relatively mild conditions. The Pt/CeO<sub>2</sub> and a series of Pt-<em>M</em>O<sub><em>x</em></sub>/CeO<sub>2</sub> (<em>M</em> = Fe, Cr, Mg, Mn) catalysts were prepared by sequential impregnation method and their APR reaction performances were studied. The catalyst properties including valence state of the promoters, the amount of oxygen vacancies, the metal distributions, the adsorption properties of CO and the acidity/basicity of catalysts were characterized and analyzed by XPS, XRD, TEM, CO-TPD, NH<sub>3</sub>-TPD, CO<sub>2</sub>-TPD, etc. It was found that the addition of <em>M</em>O<sub><em>x</em></sub> weakened the Pt-CeO<sub>2</sub> interaction and promoted the generation of Pt<sup><em>δ+</em></sup> species with lower valence state, which contribute to the C–H bond cleavage and facilitate methanol conversion. The highest hydrogen production (164.78 mmol) and relatively low CO and CH<sub>4</sub> selectivities were obtained over the Pt-MgO/CeO<sub>2</sub>, while the highest CH<sub>4</sub> selectivity was obtained over the Pt-CrO<sub><em>x</em></sub>/CeO<sub>2</sub> (2.21%). Over the Pt/CeO<sub>2</sub> and Pt-<em>M</em>O<sub><em>x</em></sub>/CeO<sub>2</sub> (<em>M</em> = Fe, Cr, Mg, Mn) catalysts, CO<sub>2</sub>/CH<sub>4</sub> ratio correlated well with the catalyst basicity, indicating that the basicity promotes the dissociation adsorption of H<sub>2</sub>O as well as the water-gas shift (WGS) reaction activity and decreases the methanation activity.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"51 12","pages":"Pages 1791-1804"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138558522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
燃料化学学报Pub Date : 2023-12-01DOI: 10.1016/S1872-5813(23)60373-1
Xing-chi LI , Han ZHAO , Xiao-li PAN , Yang SU , Ren-gui LI , Hua WANG , Lei-lei KANG , Xiao-yan LIU
{"title":"Directing the CdS nanosheet and nanowire to high efficiency for photocatalytic anaerobic dehydrogenation of benzyl alcohol to benzaldehyde by depositing Au25 nanoclusters","authors":"Xing-chi LI , Han ZHAO , Xiao-li PAN , Yang SU , Ren-gui LI , Hua WANG , Lei-lei KANG , Xiao-yan LIU","doi":"10.1016/S1872-5813(23)60373-1","DOIUrl":"https://doi.org/10.1016/S1872-5813(23)60373-1","url":null,"abstract":"<div><p>The photocatalysis of direct dehydrogenation of benzyl alcohol to benzaldehyde is an energy saving way to synthesize fine chemicals and pure hydrogen by using solar energy. The CdS-based catalysts were one of the typical kinds of photocatalysts for this reaction. The morphology of CdS could be easily tuned, which could greatly influence the photocatalytic performances. However, the morphology effect of CdS on the photocatalytic behaviour of the direct dehydrogenation of benzyl alcohol has not been investigated yet. In this work, we synthesized CdS with two different morphologies (nanosheet (NS) and nanowire (NW)) and found the CdS-NS showed much higher photocatalytic activity for converting the benzyl alcohol than the CdS-NW, but the selectivity to benzaldehyde over the two supports was very low. By depositing Au<sub>25</sub> nanoclusters on the CdS-NW and CdS-NS, the morphology effect of the CdS support could be mitigated and their catalytic activity and selectivity could be greatly boosted for the photocatalytic anaerobic dehydrogenation of benzyl alcohol to benzaldehyde and H<sub>2</sub>. The results of this work would provide new insight into the design of efficient photocatalysts for synthesizing fine chemicals.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"51 12","pages":"Pages 1825-1833"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138558583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deactivation mechanism of Cu/SiO2 catalyst in gas phase hydrogenation of furfural to furfuryl alcohol","authors":"Dong-dong YU , Xin-rui YU , Ya-jing ZHANG , Kang-jun WANG","doi":"10.1016/S1872-5813(23)60362-7","DOIUrl":"https://doi.org/10.1016/S1872-5813(23)60362-7","url":null,"abstract":"<div><p>The Cu/SiO<sub>2</sub> catalysts were prepared by co-precipitation and tested for hydrogenation of furfural to furfuryl alcohol in a fixed bed reactor. The deactivation mechanism of the catalysts was investigated by characterization of H<sub>2</sub>-TPR, ICP-OES, XPS, TG, Raman and TEM. Under the conditions of atmospheric pressure, reaction temperature of 140 °C, mass space velocity of 2.4 h<sup>–1</sup> and the molar ratio of hydrogen to furfural of 9.7, the furfural conversion was higher than 97% in the first 5 h. However, the conversion of furfural decreased rapidly from 96% to 32% after 21 h of reaction, indicating that Cu/SiO<sub>2</sub> catalyst was rapidly deactivated. The factors for the deactivation of Cu/SiO<sub>2</sub> catalyst were the agglomeration and sintering of the active component copper. Moreover, the carbon deposition on the catalyst surface resulted in the covered active site Cu<sup>0</sup>.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"51 12","pages":"Pages 1751-1760"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138558520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
燃料化学学报Pub Date : 2023-12-01DOI: 10.1016/S1872-5813(23)60365-2
Kang YU , Min LI , Gao-pan SUN , Peng ZHOU , Jin-lang TAN , Bin WANG , Tao WANG , Xiao-liang MU , Lu ZHAO , Ke-gong FANG
{"title":"The influence factors of dielectric barrier discharge plasma to production of syngas derived from H2S-CO2 acid gas","authors":"Kang YU , Min LI , Gao-pan SUN , Peng ZHOU , Jin-lang TAN , Bin WANG , Tao WANG , Xiao-liang MU , Lu ZHAO , Ke-gong FANG","doi":"10.1016/S1872-5813(23)60365-2","DOIUrl":"https://doi.org/10.1016/S1872-5813(23)60365-2","url":null,"abstract":"<div><p>H<sub>2</sub>S and CO<sub>2</sub>, two harmful acid waste gases, often co-exist in important chemical production such as coal-chemical industry, natural gas chemical industry and petrochemical industry, causing corrosion of industrial equipment and pipelines, and must be treated innocuously. Co-conversion of H<sub>2</sub>S-CO<sub>2</sub> mixed acid gas to syngas has been carried out using dielectric barrier discharge (DBD) plasma-catalysis, which renders the highly corrosive and toxic H<sub>2</sub>S and greenhouse gas CO<sub>2</sub> harmless, and produces syngas. The effects of various parameters of the DBD plasma on the reaction of one-step conversion of H<sub>2</sub>S-CO<sub>2</sub> to syngas were studied. Moreover, a comparative study of the different parameters of DBD plasma was carried out. The intrinsic correlation between the reaction performance of syngas production via H<sub>2</sub>S-CO<sub>2</sub> conversion and these parameters, including specific energy input (SEI), discharge shape, discharge frequency, discharge gap and discharge length, was investigated and revealed. On this basis, a multi-tube parallel DBD plasma reaction system was designed and constructed.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"51 12","pages":"Pages 1782-1790"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138558521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
燃料化学学报Pub Date : 2023-11-01DOI: 10.1016/S1872-5813(23)60376-7
CHENG Qing-yan , ZHANG Shuai , GU Yun-han , WANG Zhuo , WANG Jin-tao , LI Li , WANG Yan-ji , WANG Huan , QIAO Jin-dong
{"title":"Catalytic systems for the direct synthesis of dimethyl carbonate from carbon dioxide and methanol containing dehydrating agent, a review","authors":"CHENG Qing-yan , ZHANG Shuai , GU Yun-han , WANG Zhuo , WANG Jin-tao , LI Li , WANG Yan-ji , WANG Huan , QIAO Jin-dong","doi":"10.1016/S1872-5813(23)60376-7","DOIUrl":"https://doi.org/10.1016/S1872-5813(23)60376-7","url":null,"abstract":"<div><p>Dimethyl carbonate (DMC) is a widely used environment-friendly green chemical, and the direct synthesis of DMC from CO<sub>2</sub> and CH<sub>3</sub>OH has become one of the research focuses on the clean conversion of CO<sub>2</sub> in recent years. The design of efficient and stable catalysts and reaction processes to promote the conversion of CO<sub>2</sub> is the key to realize the direct synthesis of DMC in industry. In this paper, the research progress of catalytic systems for the direct synthesis of DMC from CO<sub>2</sub> and CH<sub>3</sub>OH is reviewed and the reaction mechanism of different types of catalysts is summarized, mainly including the ionic liquid catalyst, alkali metal carbonate catalyst, transition metal oxide catalyst, etc. The operation principle of various dehydrating agents and their promoting effect on the production of DMC are expounded, while the advantages and disadvantages of different catalytic-dehydration systems are analyzed. It is predicted that the development of efficient and stable catalysts and membrane materials with strong permeability to water as well as the construction and implementation of new dehydration processes will be the focus of future research on the direct synthesis of DMC from CO<sub>2</sub> and CH<sub>3</sub>OH.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"51 11","pages":"Pages 1593-1616"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138430482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
燃料化学学报Pub Date : 2023-11-01DOI: 10.1016/S1872-5813(23)60361-5
YUAN Kai , JIA Xiang-yu , WANG Sen , FAN Sheng , HE Shi-pei , WANG Peng-fei , DONG Mei , QIN Zhang-feng , FAN Wei-bin , WANG Jian-guo
{"title":"Effect of framework structure of ZSM-11 and ZSM-5 zeolites on their catalytic performance in the conversion of methanol to olefins","authors":"YUAN Kai , JIA Xiang-yu , WANG Sen , FAN Sheng , HE Shi-pei , WANG Peng-fei , DONG Mei , QIN Zhang-feng , FAN Wei-bin , WANG Jian-guo","doi":"10.1016/S1872-5813(23)60361-5","DOIUrl":"https://doi.org/10.1016/S1872-5813(23)60361-5","url":null,"abstract":"<div><p>The catalytic performance of zeolites is closely related to their framework structure and a clear understanding of such a structure-performance relationship is of great significance in revealing catalytic reaction mechanism as well as in developing efficient zeolite catalysts. Herein, ZSM-11 and ZSM-5 zeolites with similar morphology, crystal size, textural properties and acidity were hydrothermally synthesized; the effects of their differences in the 10-ring channels on the catalytic performance in the conversion of methanol to olefins (MTO) were investigated by using various characterization techniques. The results indicate that in comparison with the straight channel of ZSM-11, the sinusoidal channel of ZSM-5 has stronger diffusion resistance, which promotes the hydrogen-transfer in higher olefins, leads to forming more polymethylbenzene species and then raises the contribution of aromatic-based cycle. In contrast, ZSM-11 with straight channel can reduce the formation of polymethylbenzene species and enhance the alkene-based cycle. As a result, compared with ZSM-5-60 with similar morphology and acidity, ZSM-11-60 as a catalyst in MTO exhibits longer lifetime (98.3 h vs. 65.4 h) and higher selectivity to propene (34.6% vs. 27.4%). The insight shown in this work helps to have a better understanding of the relation between zeolite structure and catalytic performance in MTO and is then beneficial to the development of better catalysts and processes for MTO.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"51 11","pages":"Pages 1652-1662"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138430483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
燃料化学学报Pub Date : 2023-11-01DOI: 10.1016/S1872-5813(23)60366-4
HE Fu-gui , ZHANG Tong , LIANG Jie , LI Hai-peng , HE Yu-rong , GAO Xin-hua , ZHANG Jian-li , ZHAO Tian-sheng
{"title":"The application of DFT calculation in the study of iron-based catalyst for Fischer-Tropsch synthesis","authors":"HE Fu-gui , ZHANG Tong , LIANG Jie , LI Hai-peng , HE Yu-rong , GAO Xin-hua , ZHANG Jian-li , ZHAO Tian-sheng","doi":"10.1016/S1872-5813(23)60366-4","DOIUrl":"https://doi.org/10.1016/S1872-5813(23)60366-4","url":null,"abstract":"<div><p>Fischer-Tropsch synthesis (FTS) is the key technology of indirect coal liquefaction. Iron-based catalysts are commonly used. Due to the complexity of phase transition and the difficulty of <em>in-situ</em> characterization, density functional theory (DFT) has become a necessary means to study the adsorption and reaction of surface species on iron-based catalysts. In this review, the formation of different iron carbide phases and the adsorption properties of surface species were discussed based on the surface chemical properties of iron-carbon compounds. Then, the elementary reactions involved in the current DFT calculation research are briefly described. The research of chain initiation, chain growth, and chain termination under different mechanisms is summarized. Combined with the experimental research progress, the regulation mechanism of the promoters on the structure and performance of iron-based catalysts was reviewed. Finally, the existing problems of iron-based catalysts are summarized. The role of surface carbon in the reactions and the effects of various phases are prospected combined with recent results.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"51 11","pages":"Pages 1540-1564"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138396022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
燃料化学学报Pub Date : 2023-11-01DOI: 10.1016/S1872-5813(23)60368-8
GUO Lei , LIU Pei-gong , GONG Kun , QI Xing-zhen , LIN Tie-jun
{"title":"Effect of metal promoters on catalytic performance of Co/AC for higher alcohols synthesis from syngas","authors":"GUO Lei , LIU Pei-gong , GONG Kun , QI Xing-zhen , LIN Tie-jun","doi":"10.1016/S1872-5813(23)60368-8","DOIUrl":"https://doi.org/10.1016/S1872-5813(23)60368-8","url":null,"abstract":"<div><p>Shifting products of Fischer-Tropsch Synthesis (FTS) from paraffins to value-added higher alcohols receives great attention but remains great challenge. Herein, metal oxides of Mn, Zn, La and Zr are investigated as promoters to tune the activity and product distributions of Co/AC catalyst for syngas conversion. It is found that these promoters show different promotion effect on CO dissociation rate, the formation of Co<sub>2</sub>C phase and the alcohols selectivity. The formed Co<sub>2</sub>C/Co<sup>0</sup> constitutes the dual active site for higher alcohols synthesis. The strongest CO dissociation rate is observed for Zn-promoted Co/AC catalyst, resulting in the highest activity and space-time yield (STY) of alcohols. The Mn promoter is most conducive to the formation of Co<sub>2</sub>C, but slightly decreases the activity. The similar CO dissociation rate and CO conversion are obtained over both Zr- and La-promoted Co/AC catalysts, but the Zr-promoted Co/AC catalyst exhibits the highest alcohols selectivity due to the function balance between CO non-dissociative insertion and CO dissociation.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"51 11","pages":"Pages 1663-1672"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138403856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
燃料化学学报Pub Date : 2023-11-01DOI: 10.1016/S1872-5813(23)60357-3
ZHOU Qiu-ming , WANG Sen , QIN Zhang-feng , DONG Mei , WANG Jian-guo , FAN Wei-bin
{"title":"Research progress on aromatization of\u0000C6+ n-alkanes","authors":"ZHOU Qiu-ming , WANG Sen , QIN Zhang-feng , DONG Mei , WANG Jian-guo , FAN Wei-bin","doi":"10.1016/S1872-5813(23)60357-3","DOIUrl":"https://doi.org/10.1016/S1872-5813(23)60357-3","url":null,"abstract":"<div><p>Conversion of saturated straight-chain alkanes generated in the deep desulfurization process of fluid catalytic cracking (FCC) gasoline and the coal-to-oil processes into aromatics via alkane aromatization is an important non-petroleum route for the preparation of aromatics that effectively improves the quality of oil. The aromatization technology of C<sub>2</sub>–C<sub>5</sub> light hydrocarbons is relatively mature and has been used in industry. However, for the aromatization of\u0000<span><math><msubsup><mrow><mtext>C</mtext></mrow><mrow><mtext>6</mtext></mrow><mrow><mtext>+</mtext></mrow></msubsup></math></span> <em>n</em>-alkanes, the aromatics yield is still very low due to the complex reaction process and the competition of various elemental reactions. In addition, the catalysts usually suffer from rapid deactivation. In this work, we summarize the recent advances in the aromatization of\u0000<span><math><msubsup><mrow><mtext>C</mtext></mrow><mrow><mtext>6</mtext></mrow><mrow><mtext>+</mtext></mrow></msubsup></math></span> <em>n</em>-alkanes. The reaction mechanism of aromatization of\u0000<span><math><msubsup><mrow><mtext>C</mtext></mrow><mrow><mtext>6</mtext></mrow><mrow><mtext>+</mtext></mrow></msubsup></math></span> alkanes and the effects of the dispersion of metal sites, electronic state, and acidity, morphology and pore structure of the support on the catalytic performance are discussed in detail.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"51 11","pages":"Pages 1529-1539"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138430445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}