燃料化学学报最新文献

筛选
英文 中文
Research on the performance of photothermal catalytic CO2 hydrogenation to methanol using lanthanum- modified copper calcium titanate 镧改性钛酸铜钙光热催化CO2加氢制甲醇的性能研究
燃料化学学报 Pub Date : 2025-09-01 DOI: 10.1016/S1872-5813(25)60563-9
LI jianyu , NA wei , GAO wengui , HE pengcheng
{"title":"Research on the performance of photothermal catalytic CO2 hydrogenation to methanol using lanthanum- modified copper calcium titanate","authors":"LI jianyu ,&nbsp;NA wei ,&nbsp;GAO wengui ,&nbsp;HE pengcheng","doi":"10.1016/S1872-5813(25)60563-9","DOIUrl":"10.1016/S1872-5813(25)60563-9","url":null,"abstract":"<div><div>Perovskite oxide catalysts of copper calcium titanate with lanthanum (La) substituting for calcium sites were prepared by the sol-gel method, and their performance in the photothermal CO<sub>2</sub> hydrogenation to methanol was experimentally investigated. Techniques such as XRD, SEM, CO<sub>2</sub>-TPD, H<sub>2</sub>-TPR, XPS, UV-Vis DRS, and EIS were employed to evaluate the advantages of La substitution for the copper calcium titanate catalysts. The results showed that after an appropriate amount of La substitution, the catalyst achieved a methanol space-time yield of 5.788 mmol/(g·h) under 0.8 MPa and 250 ℃ with illumination, which represents a significant improvement in catalytic performance compared to the unsubstituted catalyst. This enhancement is attributed to the promotion of oxygen vacancy formation by La substitution, which enhances the photothermal response efficiency of the catalyst and, consequently, its catalytic activity.</div></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"53 9","pages":"Pages 1320-1329"},"PeriodicalIF":0.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145108403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research progress on strategies to improve the carbon dioxide capture performance of MgO-based adsorbents 提高mgo基吸附剂二氧化碳捕集性能策略的研究进展
燃料化学学报 Pub Date : 2025-09-01 DOI: 10.1016/S1872-5813(25)60545-7
ZHAO Yunrong , WANG Yaozu , NIU Yuqi , BIE Xuan , CHEN Rongjie , LI Qinghai , ZHANG Yanguo , ZHOU Hui
{"title":"Research progress on strategies to improve the carbon dioxide capture performance of MgO-based adsorbents","authors":"ZHAO Yunrong ,&nbsp;WANG Yaozu ,&nbsp;NIU Yuqi ,&nbsp;BIE Xuan ,&nbsp;CHEN Rongjie ,&nbsp;LI Qinghai ,&nbsp;ZHANG Yanguo ,&nbsp;ZHOU Hui","doi":"10.1016/S1872-5813(25)60545-7","DOIUrl":"10.1016/S1872-5813(25)60545-7","url":null,"abstract":"<div><div>Carbon dioxide (CO<sub>2</sub>) emitted during the use of fossil fuels contributes to the global warming. Carbon capture, utilization and storage (CCUS) technology based on solid material adsorption is recognized as one of the most important means to effectively control and reduce the concentration of CO<sub>2</sub>. Magnesium oxide (MgO) is considered as an ideal adsorption material due to its high theoretical adsorption capacity, low regeneration energy consumption and wide temperature applicability. However, its actual adsorption capacity still needs to be further improved. Therefore, the internal reasons restricting the efficient adsorption of CO<sub>2</sub> by MgO are introduced in this review. Meanwhile, the research progress on the preparation and modification of MgO based adsorbents in recent years is summarized. The preparation methods for enhancing the CO<sub>2</sub> adsorption performance of MgO materials are reviewed, and the modification strategies of adsorbents are highlighted, for instance, microstructure modification of MgO, preparation of MgO composite adsorbents and molten salt doping modification. Furthermore, the mechanism behind different modification strategies is analyzed, moreover, the advantages and limitations of the above modification methods are summarized. Herein, the strategies to improve CO<sub>2</sub> capture performance of MgO based adsorbents in recent years are reviewed and summarized. This review would provide insights for the design and preparation of new, cheap and efficient magnesium-based adsorbents in the future.</div></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"53 9","pages":"Pages 1269-1282"},"PeriodicalIF":0.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145108499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catalytic desorption performance of CO2-rich amine solution over SO2− 4/TiO2-HZSM-5 富co2胺溶液在SO2−4/TiO2-HZSM-5上的催化脱附性能
燃料化学学报 Pub Date : 2025-09-01 DOI: 10.1016/S1872-5813(25)60559-7
SONG Wenqian , WEN Yuxin , KANG Guojun , LI Dekang , HU Haoquan , JIN Lijun , LU Shijian , YAN Zhong , LIU Pengfei
{"title":"Catalytic desorption performance of CO2-rich amine solution over SO2− 4/TiO2-HZSM-5","authors":"SONG Wenqian ,&nbsp;WEN Yuxin ,&nbsp;KANG Guojun ,&nbsp;LI Dekang ,&nbsp;HU Haoquan ,&nbsp;JIN Lijun ,&nbsp;LU Shijian ,&nbsp;YAN Zhong ,&nbsp;LIU Pengfei","doi":"10.1016/S1872-5813(25)60559-7","DOIUrl":"10.1016/S1872-5813(25)60559-7","url":null,"abstract":"<div><div>Amine-based solution absorption method, as the most mature CO<sub>2</sub> capture technology, requires enhancing CO<sub>2</sub> desorption performance while reducing energy consumption in desorption. A series of SO2− 4/TiO<sub>2</sub>-HZSM-5 catalysts with different TiO<sub>2</sub> contents were prepared by sol-gel method using HZSM-5 as carrier and used in CO<sub>2</sub> catalytic desorption of <em>N</em>-methyl-diethanolamine and piperazine blended amine solution. Results indicated that catalyst performance can be regulated by changing the loading amount of TiO<sub>2</sub>. When the mass ratio of TiO<sub>2</sub> to HZSM-5 was 2/1, the resultant STH(2/1) catalyst had large mesoporous surface area and abundant acidic sites and exhibited excellent catalytic performance. Compared with non-catalytic system, CO<sub>2</sub> desorption amount of the entire desorption increased by 15.38% and relative heat duty decreased by 21.69%. Meanwhile, STH(2/1) exhibited good activity and stability after regeneration cycles and had no impact on CO<sub>2</sub> absorption performance. Larger mesoporous surface area of catalyst facilitated sufficient contact between reactants and acidic sites. Abundant amount of strong acid sites and Brønsted acid sites provided a large amount of H<sup>+</sup>, promoting the decomposition of carbamate and deprotonation of protonated amines. The combined action of mesoporous surface area, strong acid sites and Brønsted acid sites promoted CO<sub>2</sub> desorption. In addition, a possible mechanism for CO<sub>2</sub> desorption catalyzed by SO2− 4/TiO<sub>2</sub>-HZSM-5 was proposed.</div></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"53 9","pages":"Pages 1342-1353"},"PeriodicalIF":0.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145108398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of non-free calcium on dissolution-polymerization reaction mechanism of coal gasification slag 非游离钙对煤气化渣溶聚反应机理的影响
燃料化学学报 Pub Date : 2025-09-01 DOI: 10.1016/S1872-5813(25)60566-4
WANG Ji , MA Xu , GUO Hanghao , WANG Huixia , QU Yongping , JIAO Weizhou , MA Zhibin
{"title":"The effect of non-free calcium on dissolution-polymerization reaction mechanism of coal gasification slag","authors":"WANG Ji ,&nbsp;MA Xu ,&nbsp;GUO Hanghao ,&nbsp;WANG Huixia ,&nbsp;QU Yongping ,&nbsp;JIAO Weizhou ,&nbsp;MA Zhibin","doi":"10.1016/S1872-5813(25)60566-4","DOIUrl":"10.1016/S1872-5813(25)60566-4","url":null,"abstract":"<div><div>Coal gasification slag is an excellent raw material for preparation of cementitious materials. Due to the addition of calcium-based additives, the content of non-free calcium in silicon/aluminum-rich coal gasification slag is relatively high. Thus, the influence of non-free calcium on leaching of elemental and formation mechanisms of cementitious phase were investigated by this paper. The results indicate that non-free calcium primarily disrupts the Al−O−Al bridges in the aluminosilicate glass phase, leading to decreased polymerization degree of slag. The compressive strength of cementitious materials is affected by alkali activation concentration and polymerization degree of slag. Under low-alkali conditions, as the calcium content in the gasification slag increases, the compressive strength of the cementitious material increases firstly and then decreases. Increased calcium promotes leaching of Al, however, large amounts of dissolved calcium tend to form cementitious phases and Ca(OH)<sub>2</sub>, which can hinder leaching of ions and formation of gel. In high-alkali environments, non-free calcium enhances the compressive strength of cementitious material. Glass phase in slag was destroyed by OH⁻, and leaching rates of Si and Al in slag with high-calcium increase, which lead to more C-A-S-H in cementitious material. Additionally, elevated alkalinity promotes the crystallization of sodium-minerals such as zeolites and sodalite.</div></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"53 9","pages":"Pages 1416-1426"},"PeriodicalIF":0.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145108399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research progress on Cr-based catalysts for the CO2-assisted catalytic oxidative dehydrogenation of light alkanes to light olefins co2辅助催化轻烷烃氧化脱氢制备轻烯烃的cr基催化剂研究进展
燃料化学学报 Pub Date : 2025-09-01 DOI: 10.1016/S1872-5813(25)60551-2
NIU Mufan, SHEN Baojian
{"title":"Research progress on Cr-based catalysts for the CO2-assisted catalytic oxidative dehydrogenation of light alkanes to light olefins","authors":"NIU Mufan,&nbsp;SHEN Baojian","doi":"10.1016/S1872-5813(25)60551-2","DOIUrl":"10.1016/S1872-5813(25)60551-2","url":null,"abstract":"<div><div>Under the background of rapid consumption of crude oil and the impact of the “dual carbon” policy, utilizing light alkanes, which have a wider range of sources, as starting materials to prepare light olefins through dehydrogenation has become the most promising way to solve the problem of insufficient feedstock supply. Cr-based catalysts are attractive for their high activity and low cost. This paper reviews the current state of research on different process routes for the dehydrogenation of light alkanes to olefins, the reaction mechanism of oxidative dehydrogenation over Cr-based catalysts as well as the active sites were investigated and reviewed. CO<sub>2</sub> as a weak oxidant in light alkanes dehydrogenation can alleviate the thermodynamic equilibrium limit, effectively inhibit the coking, decrease the reaction temperature and reduce energy consumption. In addition, Cr-based catalyst supports have been summarized and systematically classified. The interaction between Cr species and supports can be improved by introducing metal additives and modifying the supports, which in turn affects the dispersion and the state of Cr species. Finally, future challenges and directions for developing Cr-based catalysts for further industrial applications are discussed.</div></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"53 9","pages":"Pages 1283-1299"},"PeriodicalIF":0.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145108397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of temperature on the catalytic behaviors of Zn-modified HZSM-5 catalysts for the ethylene aromatization 温度对zn改性HZSM-5催化剂乙烯芳构化行为的影响
燃料化学学报 Pub Date : 2025-09-01 DOI: 10.1016/S1872-5813(25)60557-3
LI Baichao , SHAO Jiabei , FENG Pengcheng , WANG Jianguo , FAN Weibin , DONG Mei
{"title":"Influence of temperature on the catalytic behaviors of Zn-modified HZSM-5 catalysts for the ethylene aromatization","authors":"LI Baichao ,&nbsp;SHAO Jiabei ,&nbsp;FENG Pengcheng ,&nbsp;WANG Jianguo ,&nbsp;FAN Weibin ,&nbsp;DONG Mei","doi":"10.1016/S1872-5813(25)60557-3","DOIUrl":"10.1016/S1872-5813(25)60557-3","url":null,"abstract":"<div><div>Zn-modified HZSM-5 catalyst has been widely used in the aromatization of ethylene, while the effect of reaction temperature on the product distribution remains unclear, a factor that is pivotal for the design of highly efficient aromatization catalysts and the optimization of process parameters. In this work, the structure, composition, and acid properties of various Zn-containing HZSM-5 catalysts prepared via ion exchange, impregnation, and physical mixing were analyzed by XRD, ICP, NH<sub>3</sub>-TPD, and Py-FTIR. The ethylene aromatization reaction on various catalytic behaviors were carried out at 400−580 ℃. The results on HZSM-5 and ZnAl<sub>2</sub>O<sub>4</sub>-pure/HZSM-5 catalysts indicated that, with reaction temperature increasing, the aromatics selectivity and aromatics produced via the dehydrogenation route increased considerably. On Zn(IE)/HZSM-5 and ZnAl<sub>1.5</sub>O/HZSM-5 catalysts, the aromatics selectivity increased rapidly and then remained basically unchanged. However, the aromatics selectivity increases at first and then remains basically unchanged, while the proportion of dehydrogenation route remains constant, on Zn(IM)/HZSM-5 and Zn(PM)/HZSM-5 catalysts. Combined with cyclohexane dehydrogenation kinetics experiments, it is confirmed that the introduction of Zn species is helpful in reducing the dehydrogenation activation energy. Furthermore, a linear relationship is observed between the dehydrogenation activation energy of the catalysts and its acid strength and type. Interestingly, due to the absence of catalytic activity for spinel-structured ZnAl<sub>2</sub>O<sub>4</sub>, the catalytic performance and dehydrogenation activation energy of the ZnAl<sub>2</sub>O<sub>4</sub>-pure/HZSM-5 catalyst closely resemble those of HZSM-5.</div></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"53 9","pages":"Pages 1354-1363"},"PeriodicalIF":0.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145108401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on biochar prepared by trace KOH catalyzed CO2 activation vs KOH activation as advanced candidate for carbon capture 痕量KOH催化CO2活化制备生物炭与KOH活化作为碳捕集先进候选物的研究
燃料化学学报 Pub Date : 2025-09-01 DOI: 10.1016/S1872-5813(25)60568-8
DENG Lihua, XIA Wei, YANG Zhikun, ZHANG Wenda, FENG Dongdong, SUN Shaozeng, ZHAO Yijun
{"title":"Research on biochar prepared by trace KOH catalyzed CO2 activation vs KOH activation as advanced candidate for carbon capture","authors":"DENG Lihua,&nbsp;XIA Wei,&nbsp;YANG Zhikun,&nbsp;ZHANG Wenda,&nbsp;FENG Dongdong,&nbsp;SUN Shaozeng,&nbsp;ZHAO Yijun","doi":"10.1016/S1872-5813(25)60568-8","DOIUrl":"10.1016/S1872-5813(25)60568-8","url":null,"abstract":"<div><div>The technology for green and macro-conversion of solid waste biomass to prepare high-quality activated carbon demands urgent development. This study proposes a technique for synthesizing carbon adsorbents using trace KOH-catalyzed CO<sub>2</sub> activation. Comprehensive investigations were conducted on three aspects: physicochemical structure evolution of biochar, mechanistic understanding of trace KOH-facilitated CO<sub>2</sub> activation processes, and application characteristics for CO<sub>2</sub> adsorption. Results demonstrate that biochar activated by trace KOH (&lt;10%) and CO<sub>2</sub> achieves comparable specific surface area (1244.09 m<sup>2</sup>/g) to that obtained with 100% KOH activation (1425.10 m<sup>2</sup>/g). The pore structure characteristics (specific surface area and pore volume) are governed by CO and CH<sub>4</sub> generated through K-salt catalyzed reactions between CO<sub>2</sub> and biochar. The optimal CO<sub>2</sub> adsorption capacities of KBC adsorbent reached 4.70 mmol/g (0 °C) and 7.25 mmol/g (25 °C), representing the maximum values among comparable carbon adsorbents. The 5%KBC-CO<sub>2</sub> sample exhibited CO<sub>2</sub> adsorption capacities of 3.19 and 5.01 mmol/g under respective conditions, attaining current average performance levels. Notably, CO<sub>2</sub>/N<sub>2</sub> selectivity (85:15, volume ratio) reached 64.71 at 0.02 bar with robust cycling stability. Molecular dynamics simulations revealed that oxygen-containing functional groups accelerate CO<sub>2</sub> adsorption kinetics and enhance micropore storage capacity. This technical route offers simplicity, environmental compatibility, and scalability, providing critical references for large-scale preparation of high-quality carbon materials.</div></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"53 9","pages":"Pages 1330-1341"},"PeriodicalIF":0.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145108404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust microwave catalytic decomposition of H2S into H2 and S at low temperature over Mo2C@CeO2 catalysts 在Mo2C@CeO2催化剂上,微波催化H2S低温分解成H2和S
燃料化学学报 Pub Date : 2025-09-01 DOI: 10.1016/S1872-5813(25)60558-5
SUN Hongyang , CHEN Jun , TU Cong , ZHOU Jicheng , XU Wentao
{"title":"Robust microwave catalytic decomposition of H2S into H2 and S at low temperature over Mo2C@CeO2 catalysts","authors":"SUN Hongyang ,&nbsp;CHEN Jun ,&nbsp;TU Cong ,&nbsp;ZHOU Jicheng ,&nbsp;XU Wentao","doi":"10.1016/S1872-5813(25)60558-5","DOIUrl":"10.1016/S1872-5813(25)60558-5","url":null,"abstract":"<div><div>The new technology of direct decomposition of H<sub>2</sub>S into high value-added H<sub>2</sub> and S, as an alternative to the Claus process in industry, is an ideal route that can not only deal with toxic and abundant H<sub>2</sub>S waste gas but also recover clean energy H<sub>2</sub>, which has significant socio-economic and ecological advantages. However, the highly effective decomposition of H<sub>2</sub>S at low temperatures is still a great challenge, because of the stringent thermodynamic equilibrium constraints (only 20% even at high temperature of 1010 °C). Conventional microwave catalysts exhibit unsatisfactory performance at low temperatures (below 600 °C). Herein, Mo<sub>2</sub>C@CeO<sub>2</sub> catalysts with a core-shell structure were successfully developed for robust microwave catalytic decomposition of H<sub>2</sub>S at low temperatures. Two carbon precursors, para-phenylenediamine (Mo<sub>2</sub>C-<em>p</em>) and meta-phenylenediamine (Mo<sub>2</sub>C-<em>m</em>), were employed to tailor Mo<sub>2</sub>C configurations. Remarkably, the H<sub>2</sub>S conversion of Mo<sub>2</sub>C-<em>p</em>@CeO<sub>2</sub> catalyst at a low temperature of 550 °C is as high as 92.1%, which is much higher than the H<sub>2</sub>S equilibrium conversion under the conventional thermal conditions (2.6% at 550 °C). To our knowledge, this represents the most active catalyst for microwave catalytic decomposition of H<sub>2</sub>S at low temperature of 550 °C. Notably, Mo<sub>2</sub>C-<em>p</em> demonstrated superior intrinsic activity (84%) compared to Mo<sub>2</sub>C-<em>m</em> (6.4%), with XPS analysis revealing that its enhanced performance stems from a higher concentration of Mo<sup>2+</sup> active sites. This work presents a substitute approach for the efficient utilization of H<sub>2</sub>S waste gas and opens up a novel avenue for the rational design of microwave catalysts for microwave catalytic reaction at low-temperature.</div></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"53 9","pages":"Pages 1399-1415"},"PeriodicalIF":0.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145108498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elucidating the catalytic role of lithium (Li) in the glucose-to-fructose isomerization over Li-C3N4 catalyst at 60 °C in water 研究了锂(Li)在60℃水溶液中Li- c3n4催化剂上对葡萄糖-果糖异构化的催化作用
燃料化学学报 Pub Date : 2025-09-01 DOI: 10.1016/S1872-5813(25)60555-X
WANG Yuxuan , GUO Fenfen , JIANG Zhicheng , TU Youjing , ZHANG Xingyu , TANG Aoyi , WANG Junxia , LIANG Yuan , YAN Lishi , KONG Lingzhao
{"title":"Elucidating the catalytic role of lithium (Li) in the glucose-to-fructose isomerization over Li-C3N4 catalyst at 60 °C in water","authors":"WANG Yuxuan ,&nbsp;GUO Fenfen ,&nbsp;JIANG Zhicheng ,&nbsp;TU Youjing ,&nbsp;ZHANG Xingyu ,&nbsp;TANG Aoyi ,&nbsp;WANG Junxia ,&nbsp;LIANG Yuan ,&nbsp;YAN Lishi ,&nbsp;KONG Lingzhao","doi":"10.1016/S1872-5813(25)60555-X","DOIUrl":"10.1016/S1872-5813(25)60555-X","url":null,"abstract":"<div><div>Fully utilizing renewable biomass energy is important for saving energy, reducing carbon emissions, and mitigating climate change. As the main hydrolysate of cellulose, a primary component of lignocellulose, glucose could be employed as a starting material to prepare some other functional derivatives for improving the value of biomass resources. The isomerization of glucose to produce fructose is an important intermediate process during numerous high-value-added chemical preparations. Therefore, the development of efficient and selective catalysts for glucose isomerization is of great significance. Currently, glucose isomerase catalysts are limited by the harsh conditions required for microbial activity, which restricts further improvements in fructose yield. Additionally, heterogeneous Brønsted-base and Lewis-acid catalysts commonly employed in chemical isomerization methods often lead to the formation of undesirable by-products, resulting in reduced selectivity toward fructose. This study has demonstrated that lithium-loaded heterogeneous catalysts possess excellent isomerization capabilities under mild conditions. A highly efficient Li-C<sub>3</sub>N<sub>4</sub> catalyst was developed, achieving a fructose selectivity of 99.9% and a yield of 42.6% at 60 °C within 1.0 h—comparable to the performance of the enzymatic method. Characterization using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), proton nuclear magnetic resonance (<sup>1</sup>H NMR), and inductively coupled plasma (ICP) analyses confirmed that lithium was stably incorporated into the g-C<sub>3</sub>N<sub>4</sub> framework through the formation of Li−N bonds. Further investigations using CO<sub>2</sub> temperature-programmed desorption (CO<sub>2</sub>-TPD), <em>in situ</em> Fourier-transform infrared spectroscopy (FT-IR) and <sup>7</sup>Li magic angle spinning nuclear magnetic resonance (<sup>7</sup>Li MAS NMR) indicated that the isomerization proceeded via a base-catalyzed mechanism. The Li species were found to interact with hydroxyl groups generated through hydrolysis and simultaneously coordinated with nitrogen atoms in the C<sub>3</sub>N<sub>4</sub> matrix, resulting in the formation of Li-N<sub>6</sub>-H<sub>2</sub>O active sites. These active sites facilitated the deprotonation of glucose to form an enolate intermediate, followed by a proton transfer step that generated fructose. This mechanism not only improved the efficiency of fructose production but also provided valuable insight into the catalytic role of lithium within the isomerization process.</div></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"53 9","pages":"Pages 1373-1384"},"PeriodicalIF":0.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145108396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation into the pyrolysis mechanism of α-D-galactose to furfural and furan α- d -半乳糖热解制糠醛和呋喃机理的研究
燃料化学学报 Pub Date : 2025-09-01 DOI: 10.1016/S1872-5813(25)60540-8
CHEN Heming , DUAN junrui , YIN Shicheng , JI Jie , LU Jia
{"title":"Investigation into the pyrolysis mechanism of α-D-galactose to furfural and furan","authors":"CHEN Heming ,&nbsp;DUAN junrui ,&nbsp;YIN Shicheng ,&nbsp;JI Jie ,&nbsp;LU Jia","doi":"10.1016/S1872-5813(25)60540-8","DOIUrl":"10.1016/S1872-5813(25)60540-8","url":null,"abstract":"<div><div>In this study, the density functional theory calculations were utilized to reveal the formation mechanisms and pathways of the significant products from α-D-galactose (the model compound of hemicellulose) pyrolysis. For the two main pyrolysis products, furan and furfural, 21 possible detailed reaction pathways were discussed for each product based on the concerted reaction mechanism. The results indicated that the energy barrier for the ring-opening reaction was the lowest at 190.07 kJ/mol in the initial reaction steps of α-D-galactose. The dominant pathway for the formation of furfural from α-D-galactose involves sequential ring-opening, isomerization, hemiacetal formation, two-step dehydration, and combined de-aldehyde and dehydration reactions, with an energy barrier of 291.53 kJ/mol. For furan, two highly competitive dominant pathways were identified, with energy barriers of 287.21 and 288.51 kJ/mol, respectively. In the former pathway, the small molecule volatiles formed are glycolic acid and water. While in the latter pathway, they are formic acid, formaldehyde, and water. In summary, this study could provide an in-depth understanding of the formation mechanisms of furan and furfural during the pyrolysis of α-D-galactose, which is helpful for better design, optimization, and control of biomass conversion.</div></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"53 9","pages":"Pages 1385-1398"},"PeriodicalIF":0.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145108500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信