{"title":"co2辅助催化轻烷烃氧化脱氢制备轻烯烃的cr基催化剂研究进展","authors":"NIU Mufan, SHEN Baojian","doi":"10.1016/S1872-5813(25)60551-2","DOIUrl":null,"url":null,"abstract":"<div><div>Under the background of rapid consumption of crude oil and the impact of the “dual carbon” policy, utilizing light alkanes, which have a wider range of sources, as starting materials to prepare light olefins through dehydrogenation has become the most promising way to solve the problem of insufficient feedstock supply. Cr-based catalysts are attractive for their high activity and low cost. This paper reviews the current state of research on different process routes for the dehydrogenation of light alkanes to olefins, the reaction mechanism of oxidative dehydrogenation over Cr-based catalysts as well as the active sites were investigated and reviewed. CO<sub>2</sub> as a weak oxidant in light alkanes dehydrogenation can alleviate the thermodynamic equilibrium limit, effectively inhibit the coking, decrease the reaction temperature and reduce energy consumption. In addition, Cr-based catalyst supports have been summarized and systematically classified. The interaction between Cr species and supports can be improved by introducing metal additives and modifying the supports, which in turn affects the dispersion and the state of Cr species. Finally, future challenges and directions for developing Cr-based catalysts for further industrial applications are discussed.</div></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"53 9","pages":"Pages 1283-1299"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research progress on Cr-based catalysts for the CO2-assisted catalytic oxidative dehydrogenation of light alkanes to light olefins\",\"authors\":\"NIU Mufan, SHEN Baojian\",\"doi\":\"10.1016/S1872-5813(25)60551-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Under the background of rapid consumption of crude oil and the impact of the “dual carbon” policy, utilizing light alkanes, which have a wider range of sources, as starting materials to prepare light olefins through dehydrogenation has become the most promising way to solve the problem of insufficient feedstock supply. Cr-based catalysts are attractive for their high activity and low cost. This paper reviews the current state of research on different process routes for the dehydrogenation of light alkanes to olefins, the reaction mechanism of oxidative dehydrogenation over Cr-based catalysts as well as the active sites were investigated and reviewed. CO<sub>2</sub> as a weak oxidant in light alkanes dehydrogenation can alleviate the thermodynamic equilibrium limit, effectively inhibit the coking, decrease the reaction temperature and reduce energy consumption. In addition, Cr-based catalyst supports have been summarized and systematically classified. The interaction between Cr species and supports can be improved by introducing metal additives and modifying the supports, which in turn affects the dispersion and the state of Cr species. Finally, future challenges and directions for developing Cr-based catalysts for further industrial applications are discussed.</div></div>\",\"PeriodicalId\":15956,\"journal\":{\"name\":\"燃料化学学报\",\"volume\":\"53 9\",\"pages\":\"Pages 1283-1299\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"燃料化学学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872581325605512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581325605512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
Research progress on Cr-based catalysts for the CO2-assisted catalytic oxidative dehydrogenation of light alkanes to light olefins
Under the background of rapid consumption of crude oil and the impact of the “dual carbon” policy, utilizing light alkanes, which have a wider range of sources, as starting materials to prepare light olefins through dehydrogenation has become the most promising way to solve the problem of insufficient feedstock supply. Cr-based catalysts are attractive for their high activity and low cost. This paper reviews the current state of research on different process routes for the dehydrogenation of light alkanes to olefins, the reaction mechanism of oxidative dehydrogenation over Cr-based catalysts as well as the active sites were investigated and reviewed. CO2 as a weak oxidant in light alkanes dehydrogenation can alleviate the thermodynamic equilibrium limit, effectively inhibit the coking, decrease the reaction temperature and reduce energy consumption. In addition, Cr-based catalyst supports have been summarized and systematically classified. The interaction between Cr species and supports can be improved by introducing metal additives and modifying the supports, which in turn affects the dispersion and the state of Cr species. Finally, future challenges and directions for developing Cr-based catalysts for further industrial applications are discussed.
期刊介绍:
Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.