Photo-induced in-situ synthesis of Cu2O@C nanocomposite for efficient photocatalytic evolution of hydrogen

Q3 Energy
LI Na , MAO Shuhong , YAN Wenjun , ZHANG Jing
{"title":"Photo-induced in-situ synthesis of Cu2O@C nanocomposite for efficient photocatalytic evolution of hydrogen","authors":"LI Na ,&nbsp;MAO Shuhong ,&nbsp;YAN Wenjun ,&nbsp;ZHANG Jing","doi":"10.1016/S1872-5813(23)60400-1","DOIUrl":null,"url":null,"abstract":"<div><p>Cuprous oxide (Cu<sub>2</sub>O) is an ideal visible light catalyst owing to its narrow band gap, environmental benignity and abundant storage; however, the fast recombination of photogenerated charge carriers and poor stability of Cu<sub>2</sub>O has impeded its application in photocatalysis. Herein, we demonstrate that Cu<sub>2</sub>O@C nanocomposite can spontaneously evolve from a methanol aqueous solution containing cupric ions under the induction of irradiation. Compared with the traditional carbon coating method, the Cu<sub>2</sub>O@C nanocomposite obtained by the photo-induced <em>in-situ</em> synthesis can reserve superior original characteristics of the semiconductor under mild reaction conditions, promote the charge transfer and enhance the separation efficiency of charge carriers; in addition, the carbon shells can also effectively prevent Cu<sub>2</sub>O from photo-corrosion. As a result, the Cu<sub>2</sub>O@C nanocomposite exhibits excellent photocatalytic activity in the hydrogen evolution in comparison with the Cu<sub>2</sub>O particles; the H<sub>2</sub> evolution rate over the Cu<sub>2</sub>O@C nanocomposite reaches 1.28 mmol/(g·h) under visible light, compared with the value of 0.065 mmol/(g·h) over Cu<sub>2</sub>O. Moreover, the Cu<sub>2</sub>O@C nanocomposite displays good cycle stability, viz., without any deactivation in the catalytic activity after five cycles.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 5","pages":"Pages 698-706"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581323604001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Cuprous oxide (Cu2O) is an ideal visible light catalyst owing to its narrow band gap, environmental benignity and abundant storage; however, the fast recombination of photogenerated charge carriers and poor stability of Cu2O has impeded its application in photocatalysis. Herein, we demonstrate that Cu2O@C nanocomposite can spontaneously evolve from a methanol aqueous solution containing cupric ions under the induction of irradiation. Compared with the traditional carbon coating method, the Cu2O@C nanocomposite obtained by the photo-induced in-situ synthesis can reserve superior original characteristics of the semiconductor under mild reaction conditions, promote the charge transfer and enhance the separation efficiency of charge carriers; in addition, the carbon shells can also effectively prevent Cu2O from photo-corrosion. As a result, the Cu2O@C nanocomposite exhibits excellent photocatalytic activity in the hydrogen evolution in comparison with the Cu2O particles; the H2 evolution rate over the Cu2O@C nanocomposite reaches 1.28 mmol/(g·h) under visible light, compared with the value of 0.065 mmol/(g·h) over Cu2O. Moreover, the Cu2O@C nanocomposite displays good cycle stability, viz., without any deactivation in the catalytic activity after five cycles.

光诱导原位合成 Cu2O@C 纳米复合材料,用于高效光催化氢气进化
氧化亚铜(Cu2O)具有带隙窄、对环境无害和储量丰富等优点,是一种理想的可见光催化剂;然而,Cu2O 光生电荷载流子的快速重组和稳定性差阻碍了它在光催化中的应用。在此,我们证明了 Cu2O@C 纳米复合材料能在辐照诱导下从含有铜离子的甲醇水溶液中自发演化出来。与传统的碳包覆法相比,光诱导原位合成法得到的 Cu2O@C 纳米复合材料在温和的反应条件下能保留半导体原有的优良特性,促进电荷转移,提高电荷载流子的分离效率;此外,碳壳还能有效防止 Cu2O 的光腐蚀。因此,与 Cu2O 颗粒相比,Cu2O@C 纳米复合材料在氢气进化方面表现出优异的光催化活性;在可见光下,Cu2O@C 纳米复合材料的氢气进化率达到 1.28 mmol/(g-h),而 Cu2O 的氢气进化率仅为 0.065 mmol/(g-h)。此外,Cu2O@C 纳米复合材料显示出良好的循环稳定性,即在五个循环后催化活性没有失活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
燃料化学学报
燃料化学学报 Chemical Engineering-Chemical Engineering (all)
CiteScore
2.80
自引率
0.00%
发文量
5825
期刊介绍: Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信