燃料化学学报Pub Date : 2024-07-01DOI: 10.1016/S1872-5813(23)60411-6
Shen Yang , Cui Cunhao , Liu Haoran , Ren Hairong , Cai Jianghuai , Zhou Zhongyue , Qi Fei
{"title":"Recent Contributions of Photoionization Mass Spectrometry in the Study of Typical Solid Fuel Pyrolysis","authors":"Shen Yang , Cui Cunhao , Liu Haoran , Ren Hairong , Cai Jianghuai , Zhou Zhongyue , Qi Fei","doi":"10.1016/S1872-5813(23)60411-6","DOIUrl":"https://doi.org/10.1016/S1872-5813(23)60411-6","url":null,"abstract":"<div><p>Pyrolysis, an economically viable method, thermochemically converts solid fuel into transportation fuels and value-added chemicals, such as clean gas, liquid fuels, and chemicals, alongside undesirable by-products. Photoionization mass spectrometry (PIMS) is a versatile technique for real-time process analysis, offering ‘soft’ ionization for complex analytes, detecting and analyzing ions during <em>in-situ</em> pyrolysis. This review focuses on recent applications of PIMS during pyrolysis of solid fuels (i.e. coal, biomass and energetic materials). It summarizes studies on mass spectrometric analysis combined with different reactors and highlights the benefits through online PIMS as a diagnostic tool for <em>in-situ</em> analysis. It provides an overview of interplay between experimental advancements and models and discusses future perspectives, potential applications in support of mechanistic studies.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 7","pages":"Pages 921-944"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141478865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
燃料化学学报Pub Date : 2024-05-29DOI: 10.1016/S1872-5813(23)60410-4
Bixi WANG , Zeyu LIU , Yabei WU , Yanyan YANG , Song YANG , Xun WANG , Zi YE , Hongliang DONG , Feng ZHU , Huanhuan YU , Yingying LÜ , Zhongliang YU
{"title":"Multi-site Co2P catalyst derived from soybean biomass for dehydrogenation of formic acid","authors":"Bixi WANG , Zeyu LIU , Yabei WU , Yanyan YANG , Song YANG , Xun WANG , Zi YE , Hongliang DONG , Feng ZHU , Huanhuan YU , Yingying LÜ , Zhongliang YU","doi":"10.1016/S1872-5813(23)60410-4","DOIUrl":"https://doi.org/10.1016/S1872-5813(23)60410-4","url":null,"abstract":"<div><p>Formic acid (FA) is a sustainable liquid organic hydrogen carrier and the catalyst for hydrogen production from FA has received significant attention. However, the development of efficient non-noble metal catalysts still remains challenges. In this work, we provide a technologically rather simple and environmental-friendly strategy to synthesize Co<sub>2</sub>P catalyst for dehydrogenation of FA by pyrolyzing soybean powder and cobalt salt. The K-containing solid bases in catalyst could act as Lewis acid sites for the HCOO<sup>−</sup> intermediate adsorption while the self-doped N could act as Lewis base sites to enhance the H<sup>+</sup> adsorption. The P contained in soybean could combine with Co to form Co<sub>2</sub>P for H−C bond cleavage of HCOO<sup>−</sup>. At a Co(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O/soybean mass ratio of 1:15, the as prepared Co<sub>2</sub>P catalyst demonstrated a gas production rate of 237.47 mL/(g·h) and a good stability. This study provides a novel strategy to develop non-noble metal heterogeneous catalysts for FA dehydrogenation.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 6","pages":"Pages 883-892"},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141163795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
燃料化学学报Pub Date : 2024-05-29DOI: 10.1016/S1872-5813(23)60412-8
Wanying LI, Liangyong CHEN
{"title":"Surface reaction and lattice oxygen transfer in chemical looping oxidative coupling of methane: Molecular dynamics simulations","authors":"Wanying LI, Liangyong CHEN","doi":"10.1016/S1872-5813(23)60412-8","DOIUrl":"https://doi.org/10.1016/S1872-5813(23)60412-8","url":null,"abstract":"<div><p>Chemical-looping oxidative coupling of methane (CL-OCM) is a promising methodology for ethylene production from methane. This article utilizes molecular dynamics (MD) simulation to assess the performance of eight metal oxide catalytic oxygen carriers in CL-OCM reactions. It also investigates the impact of reaction time and particle size on the efficiency of the most effective Mn<sub>2</sub>O<sub>3</sub> COC. The results indicate that extending the reaction time appropriately enhances C<sub>2</sub>H<sub>4</sub> selectivity and a C/O ratio of 1 is found to be the optimal size for Mn<sub>2</sub>O<sub>3</sub>-based CL-OCM. Furthermore, surface reactions and lattice oxygen transfer are analyzed by MD simulation in Mn<sub>2</sub>O<sub>3</sub>-based CL-OCM, providing deeply insights into the reaction mechanism. The findings reveal that the gas-phase dimerization of\u0000<span><math><msubsup><mrow><mtext>CH</mtext></mrow><mrow><mtext>3</mtext></mrow><mrow><mtext>*</mtext></mrow></msubsup></math></span> to form C<sub>2</sub>H<sub>6</sub> serves as the primary carbon coupling pathway in CL-OCM. In addition, there are two other carbon coupling pathways, both initiated by\u0000<span><math><msubsup><mrow><mtext>CH</mtext></mrow><mrow><mtext>2</mtext></mrow><mrow><mtext>*</mtext></mrow></msubsup></math></span>. Methanol formation through surface combination of\u0000<span><math><msubsup><mrow><mtext>CH</mtext></mrow><mrow><mtext>3</mtext></mrow><mrow><mtext>*</mtext></mrow></msubsup></math></span> and OH* represents an initial step in CL-OCM side reactions. Therefore, inhibiting methanol formation is crucial for enhancing C<sub>2</sub> selectivity in CL-OCM. There exists a transformation of lattice oxygen and surface lattice oxygen plays a key role in methane activation. The quantity of lattice oxygen and difference in bulk lattice oxygen migration resistance are major factors influencing CH<sub>4</sub> conversion and C<sub>2</sub> selectivity. This study provides a new way to reaction mechanism exploration related to CL-OCM catalytic oxygen carriers.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 6","pages":"Pages 820-830"},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141164659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
燃料化学学报Pub Date : 2024-05-29DOI: 10.1016/S1872-5813(23)60409-8
Hao SIMA, Xuefeng WANG, Cunbao DENG
{"title":"Study on copper-based oxygen carrier catalytic power plant flue gas deoxidation","authors":"Hao SIMA, Xuefeng WANG, Cunbao DENG","doi":"10.1016/S1872-5813(23)60409-8","DOIUrl":"https://doi.org/10.1016/S1872-5813(23)60409-8","url":null,"abstract":"<div><p>The main components of power plant flue gas are N<sub>2</sub>, CO<sub>2</sub> and part O<sub>2</sub>. Injecting power plant flue gas into mine goaf can achieve CO<sub>2</sub> storage and replace nitrogen injection to prevent spontaneous combustion of left coal. However, O<sub>2</sub> in flue gas is one of the factors causing spontaneous combustion of left coal. Therefore, it is urgent to develop an economical and effective catalyst to remove O<sub>2</sub> from power plant flue gas. In this study, four types of copper-based catalysts were prepared using a controllable modulating support and loading capacity through co-precipitation method. Additionally, a series of CuO/CeO<sub>2</sub> catalysts were prepared. The catalysts were characterized using BET, XRD, ICP, TEM, H<sub>2</sub>-TPR and XPS to establish a structure-activity relationship of catalyst. The results showed that the addition of CeO<sub>2</sub> enhanced the dispersion of CuO, increased the oxygen vacancy in the catalyst, and improved the activity and reduction-oxidation performance of the catalyst. Moreover, the synergistic effect of Cu-Ce interface structure promoted the redox process, showing good activity and cycle stability. Among the catalysts, the 30CuO/CeO<sub>2</sub> sample showed the best catalytic deoxidation performance owing to its smallest CuO particle size, highest dispersion and oxygen vacancy concentration. The results of this study provide a reference for the development of low cost, recyclable, high activity and stability deoxidation catalysts.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 6","pages":"Pages 839-849"},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141164661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
燃料化学学报Pub Date : 2024-05-29DOI: 10.1016/S1872-5813(24)60408-6
Huan ZHANG , Liang LIU , Yi-lin SHI , Xiao-lei QIAO , Yan JIN
{"title":"Mechanism of catalytic decomposition of NO by Cu-ZSM-5","authors":"Huan ZHANG , Liang LIU , Yi-lin SHI , Xiao-lei QIAO , Yan JIN","doi":"10.1016/S1872-5813(24)60408-6","DOIUrl":"https://doi.org/10.1016/S1872-5813(24)60408-6","url":null,"abstract":"<div><p>Catalytic decomposition of NO by Cu-ZSM-5 has potential application. In order to reveal the mechanism of the process, the adsorption of NO over short-range Cu<sup>+</sup> pairs in Cu-ZSM-5 was simulated based on density functional theory. The reaction pathways of NO decomposition assisted by the by-products N<sub>2</sub>O and NO<sub>2</sub> were also proposed. The results showed that the double nuclear copper-oxygen species was an important active centre. During the reaction, the highest activation energy (171.39 kJ/mol) was required for the decomposition of the by-product NO<sub>2</sub> on the binuclear copper-oxygen species. While that for the decomposition of N<sub>2</sub>O was 86.92 kJ/mol, suggesting that the decomposition of NO<sub>2</sub> was more difficult. The desorption energy of N<sub>2</sub> and O<sub>2</sub> were 28.43 and 100.78 kJ/mol, respectively. The rate determining step was O<sub>2</sub> desorption. NO acted both as a reactant and a key reductant for the redox cycle of the active centre of Cu-ZSM-5 during the process.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 6","pages":"Pages 831-838"},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141164660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
燃料化学学报Pub Date : 2024-05-29DOI: 10.1016/S1872-5813(24)60432-9
Jinxiao SUN, Xiaohan WANG, Qiang WEI, Yasong ZHOU
{"title":"Synthesis of small crystal NiY zeolites and their catalytic performance in hydrocracking","authors":"Jinxiao SUN, Xiaohan WANG, Qiang WEI, Yasong ZHOU","doi":"10.1016/S1872-5813(24)60432-9","DOIUrl":"https://doi.org/10.1016/S1872-5813(24)60432-9","url":null,"abstract":"<div><p>A series of small crystal Y-<em>x</em>Ni zeolites with different amounts of Ni doping were synthesized by <em>in-situ</em> introducing the Ni precursors during the synthesis, through which the active Ni metal was incorporated into the framework of the Y zeolites. With the mechanical mixture of Y-<em>x</em>Ni zeolites and amorphous silica-alumina (ASA) as the support, a series of Cat-<em>x</em>Ni catalysts were prepared through loading the Ni and W components by incipient wet impregnation and the catalytic performance of Cat-<em>x</em>Ni in the hydrocracking of <em>n</em>-hexadecane was then investigated. In addition, the effect of Ni doping on the physicochemical properties of Y zeolite and Cat-<em>x</em>Ni catalysts was elucidated with the help of scanning electron microscopy (SEM), X-ray diffraction (XRD), N<sub>2</sub>-adsorption desorption, NH<sub>3</sub> temperature programmed desorption (NH<sub>3</sub>-TPD), H<sub>2</sub> temperature programmed reduction (H<sub>2</sub>-TPR), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and so on. The results indicate that Ni can replace Al to enter the framework of the Y zeolites. The incorporation of appropriate amount of Ni into the Y zeolites can increase their relative crystallinity and the number of Br⊘nsted and Lewis acid sites; however, excessive Ni incorporation is detrimental to the crystallization of Y zeolite and excessive non-framework Ni species will cover the surface Br⊘nsted acid sites. Moreover, Ni doping can weaken the metal-support interaction, increase the sulfation extent of the active metal and the stacking number and dispersion of the active NiWS phase, and then improve the matching between the metal and acid sites on the Cat-<em>x</em>Ni catalysts. As a results, in comparison with the counterpart Cat-0Ni catalyst, the Cat-<em>x</em>Ni catalysts display more Br⊘nsted acid sites and active NiWS sites as well as improved the synergy between the metal sites and acid sites, which can enhance the conversion of <em>n</em>-hexadecane whereas inhibit the over-cracking, and then booster the yield of the middle distillate products (C<sub>8</sub>–C<sub>12</sub>). In particular, for the <em>n</em>-hexadecane hydrocracking at 360 °C, the Cat-0.2Ni catalyst exhibits a C<sub>8</sub>–C<sub>12</sub> product yield of 65.4%, with a much higher <em>n</em>-C<sub>16</sub> conversion than the Cat-0Ni counterpart. All these suggest that the pre-impregnation of active metal Ni on the Y zeolites can effectively regulate the balance between the hydrogenation and cracking performance and improve the catalytic activity and the yield of middle distillate products in the hydrocracking of paraffins.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 6","pages":"Pages 775-789"},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141164658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
燃料化学学报Pub Date : 2024-05-29DOI: 10.1016/S1872-5813(23)60433-0
Shuai GUO , Likui FENG , Zhiyong YU , Di XU , Kaidi LIU , Xiaoning SONG , Yijie CHENG , Qiuyang CAO , Guanghui WANG , Mingyue DING
{"title":"Effects of preparation methods on the performance of InZr/SAPO-34 composite catalysts for CO2 hydrogenation to light olefins","authors":"Shuai GUO , Likui FENG , Zhiyong YU , Di XU , Kaidi LIU , Xiaoning SONG , Yijie CHENG , Qiuyang CAO , Guanghui WANG , Mingyue DING","doi":"10.1016/S1872-5813(23)60433-0","DOIUrl":"https://doi.org/10.1016/S1872-5813(23)60433-0","url":null,"abstract":"<div><p>Light olefins are of great importance as chemical raw materials, and ethylene is a crucial symbol to evaluate the development level of petrochemical industry. Catalytic hydrogenation of CO<sub>2</sub> to light olefins is one of the most vital approaches to utilize CO<sub>2</sub> with high added valued. InZr/SAPO-34 composite catalyst shows prominent potential in research and application because of their high light olefins selectivity and high stability in CO<sub>2</sub> hydrogenation. In this study, the effects of different preparation methods of InZr/SAPO-34 composite catalyst for CO<sub>2</sub> hydrogenation to light olefins were studied in depth. The catalyst prepared by co-precipitation method showed the highest catalytic activity, and the catalyst prepared by sol-gel-precipitation method showed the highest light olefins selectivity. The structure-activity relationship of InZr/SAPO-34 catalysts were revealed by various characterization methods.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 6","pages":"Pages 790-799"},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141164653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
燃料化学学报Pub Date : 2024-05-29DOI: 10.1016/S1872-5813(24)60437-8
Xiaoxia WANG, Long SUN, Li QIN, Jing SU, Jiajia WANG
{"title":"Photocatalytic promotion of benzylamine C-N coupling by oxygen vacancies in bismuth oxychloride@nanocellulose composites","authors":"Xiaoxia WANG, Long SUN, Li QIN, Jing SU, Jiajia WANG","doi":"10.1016/S1872-5813(24)60437-8","DOIUrl":"https://doi.org/10.1016/S1872-5813(24)60437-8","url":null,"abstract":"<div><p>In this study, a composite photocatalyst BiOCl@CNC was prepared by simple stirring with BiOCl at room temperature using nanocellulose (CNC) as a carrier. Comprehensive characterizations (XRD, FT-IR, SEM, TEM, XPS) reveal that the abundant hydroxyl groups in CNC can form strong hydrogen bonds with BiOCl, leading to the creation of numerous oxygen vacancies in the material and thereby significantly enhancing its visible light-driven photocatalytic performance. The performance of the BiOCl@CNC was evaluated using the C-N coupling reaction of benzylamine as the target reaction under visible light, and the underlying mechanism was investigated. The results show that the optimal reaction process is that 1.0 mmol of benzylamine and 20 mg of BiOCl@CNC are added to CH<sub>3</sub>CN under an oxygen atmosphere to react for 20 h using a 30 W white LED lamp as the light source. In the substrate expansion experiments, the BiOCl@CNC exhibits remarkable adaptability and exceptional stability towards reactants with diverse substituents. The free radical capture experiments demonstrate that the electrons can effectively generate superoxide radicals in the presence of oxygen vacancies and subsequently form the ultimate product through amine cation radical intermediates. This study not only expands the application potential of Bi-based composite semiconductors but also presents novel insights for synthesizing N-benzylene butylamine.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 6","pages":"Pages 864-872"},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141164662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
燃料化学学报Pub Date : 2024-05-01DOI: 10.1016/S1872-5813(23)60403-7
LI Wei , GONG Honghui , SHI Xianlei
{"title":"Recent advances in preparing biomass-based 2,5-bis(hydroxymethyl)furan by catalytic transfer hydrogenation","authors":"LI Wei , GONG Honghui , SHI Xianlei","doi":"10.1016/S1872-5813(23)60403-7","DOIUrl":"https://doi.org/10.1016/S1872-5813(23)60403-7","url":null,"abstract":"<div><p>Biomass-based 2,5-bis(hydroxymethyl)furan (BHMF) is one of the important high value-added chemicals, which can be prepared from inexpensive and renewable carbohydrates through the way of catalytic conversion and selective hydrogenation, and as a widely used chemical intermediate and fuel precursor, it has unique advantages in improving the performance of traditional polyesters and synthesizing new biodegradable bio-based polyesters. In recent years, the research on the production of high value-added chemicals such as BHMF from carbohydrate has been attracting much attention from both academia and industry. However, cleanliness, high efficiency, high selectivity and low-cost remain key challenges in this area, especially for practical applications. In the process of BHMF production, the traditional hydrogenation method consumed a large amount of high-grade energy of hydrogen, and an excessive investment in infrastructure would be generated due to the security risks of higher pressure of hydrogen. On account of the advantages of catalytic transfer hydrogenation, the advances in selective hydrogenation to prepare BHMF using formic acid, alcohols and other types of hydrogen donors by the approach of catalytic transfer hydrogenation is systematically discussed in this review. In view of the features and problems of different types of hydrogen donors, catalysts and reaction processes during the catalytic transfer hydrogenation process, the effects of reaction conditions and process intensifications on the selectivity and yield of BHMF, and the merits and demerits of the reaction system were all investigated. On this basis, the future directions of new catalytic systems for preparation of BHMF by transfer hydrogenation is proposed, and the cleaner, more efficient and essential safety technologies for the production of BHMF is predicted, which will provide some scientific reference for the research and development of related catalytic systems in biomass conversion.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 5","pages":"Pages 735-755"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140822688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
燃料化学学报Pub Date : 2024-05-01DOI: 10.1016/S1872-5813(23)60407-4
ZHAO Yan , LI Xiang , HUANG Jinkai , LI Xianchun , ZHU Yaming , WANG Huanran
{"title":"Mechanism of heterogeneous reduction of NO over graphite-supported single-atom Fe catalyst: DFT study","authors":"ZHAO Yan , LI Xiang , HUANG Jinkai , LI Xianchun , ZHU Yaming , WANG Huanran","doi":"10.1016/S1872-5813(23)60407-4","DOIUrl":"https://doi.org/10.1016/S1872-5813(23)60407-4","url":null,"abstract":"<div><p>The mechanism of nitrogen oxide (NO) reduction over graphite carbon-supported single-atom iron (Fe) catalyst (Fe/G) was investigated by density functional theory (DFT) and transition state theory (TST). The catalyst deactivation was also analyzed. The results revealed that the NO reduction, based on the Eley-Rideal (E-R) mechanism, underwent four stages including N<sub>2</sub>O formation and release as well as N<sub>2</sub> formation and release. However, the NO reduction only involved two stages according to Langmuir-Hinshelwood (L-H) mechanism: N<sub>2</sub> formation and release. Furthermore, for the E-R mechanism, the rate-controlling step was NO reduction, where a NO molecule was adsorbed on an Fe atom with an N, O-down structure with energy barrier of 15.5 kJ/mol, lower than that of other paths. Energy barrier analysis indicated that the energy barrier for the reduction of reactive oxygen species was higher than that for the formation of N<sub>2</sub>. Reactive oxygen species remaining on the surface of Fe atoms after NO decomposition inhibited the adsorption and reduction of NO, leading to catalyst deactivation due to the absence of active sites. The single-atom Fe species promoted the NO reduction. Kinetic analysis results suggested that, upon increasing the reaction temperature, the NO reduction rate increased more significantly than the reactive oxygen transfer rate.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 5","pages":"Pages 717-724"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140824563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}