Marine J Petit, Nicholas Johnson, Karen L Mansfield
{"title":"Vectorial dynamics underpinning current and future tick-borne virus emergence in Europe.","authors":"Marine J Petit, Nicholas Johnson, Karen L Mansfield","doi":"10.1099/jgv.0.002041","DOIUrl":"https://doi.org/10.1099/jgv.0.002041","url":null,"abstract":"<p><p>Tick-borne diseases pose a growing threat to human and animal health in Europe, with tick-borne encephalitis virus (TBEV) and Crimean-Congo haemorrhagic fever virus (CCHFV), vectored by <i>Ixodes ricinus</i> and <i>Hyalomma marginatum</i>, respectively, emerging as primary public health concerns. The ability of ticks to transmit pathogens to multiple hosts and maintain infections across life stages makes them highly efficient vectors. However, many aspects of tick ecology and vectorial capacity remain understudied. This review examines key factors contributing to the vectorial competence of European ticks and their associated viruses. We first explore the influence of climate change on vector and disease ecology, using TBEV and CCHFV as case studies. We then analyse the role of the tick antiviral response in shaping vector competence. By integrating these elements, this review aims to enhance our understanding of tick-borne viral diseases and support the development of public health strategies, particularly through the One Health framework, to mitigate their impact in Europe.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"105 11","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Why is next-generation sequencing essential in modern virology?","authors":"Charlotte Lefèvre, Nerea Irigoyen","doi":"10.1099/jgv.0.002050","DOIUrl":"10.1099/jgv.0.002050","url":null,"abstract":"<p><p>A contaminated viral stock results in considerable loss of time, resources and financial means and is generally discovered only by chance after years of research. Thus, it is necessary to implement a technique that can detect contamination without prior knowledge or assumptions, such as next-generation sequencing (NGS). Here, we describe the discovery of a cross-contaminated viral stock from a biological repository of an African Zika virus isolate with Toscana virus after performing NGS on infected cells. In addition, we also describe the consequences that we faced using this contaminated stock. These included the economic and time loss to the lab that needed to repeat all previously performed experiments, the generation of biologically flawed results with a subsequent potential retraction and the severe risk of infection of lab members who manipulated the contaminated stock.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"105 11","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142681927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hannah C Byren, Angela Holzer, Alexander Müller, Klaus Korn, Marija Backovic, Ellen G Harrer, Silke Bergmann, Thomas Harrer, Frank Neipel
{"title":"Increased human herpesvirus-8 neutralizing response during remission from Kaposi's sarcoma.","authors":"Hannah C Byren, Angela Holzer, Alexander Müller, Klaus Korn, Marija Backovic, Ellen G Harrer, Silke Bergmann, Thomas Harrer, Frank Neipel","doi":"10.1099/jgv.0.002044","DOIUrl":"https://doi.org/10.1099/jgv.0.002044","url":null,"abstract":"<p><p>Human herpesvirus-8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus, is a human oncogenic herpesvirus that is responsible for several diseases including Kaposi's sarcoma (KS). KS prevalence varies dramatically, although emergence increases considerably with human immunodeficiency virus -1 (HIV-1) co-infection, making it one of the most common cancers in HIV-1 patients and sub-Saharan African men, even prior to the HIV-1 epidemic in Africa. Studies have shown that neutralizing antibodies exist in HHV-8-infected sera, which are most likely targeted to viral lytic surface glycoproteins, such as glycoprotein K8.1 (gpK8.1) and gHgL. Fifty-eight HHV-8-positive serum samples were tested for the levels of gpK8.1- and gHgL-binding antibodies and <i>in vitro</i> HHV-8-neutralizing capacity. Each sample was then categorized according to the disease status, which included asymptomatic infection, active KS and remission from KS, and the three measured parameters were compared between the disease groups. We show that neutralizing capacity in infected patient sera increases with remission of KS. Interestingly, antibodies targeting gpK8.1, but not gHgL, were also found to be increased during active disease and remission. Comparison of neutralizing capacity and antibody levels on an individual patient basis revealed that antibody levels, primarily targeting gHgL, are correlated with serum neutralizing response in sub-lingual Kaposi sarcoma (SLK) cells. Adsorption of gHgL or gpK8.1 antibodies from human sera removed the neutralizing response in SLK cells, although some non-specific removal of antibodies from the sera means that this result should be interpreted with caution. Taken collectively, these results suggest that glycoproteins, such as gHgL, are targets for neutralizing antibodies. Furthermore, our data imply that recovery from KS is associated with increased neutralizing capacity, suggesting that neutralizing antibodies may contribute to KS resolution. However, it is vital for further work to be completed in order to elucidate this relationship.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"105 11","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yonca Keskek Turk, Koray Ergunay, Alain Kohl, Joseph Hughes, Clive S McKimmie
{"title":"Toscana virus - an emerging Mediterranean arbovirus transmitted by sand flies.","authors":"Yonca Keskek Turk, Koray Ergunay, Alain Kohl, Joseph Hughes, Clive S McKimmie","doi":"10.1099/jgv.0.002045","DOIUrl":"10.1099/jgv.0.002045","url":null,"abstract":"<p><p>Toscana virus (TOSV) is an emerging arthropod-borne virus (arbovirus) of medical importance that is increasing its range across much of the Mediterranean Basin, Europe and the Middle East. Transmitted by <i>Phlebotomus</i> spp. sand flies, it is the most clinically relevant sand fly-borne phlebovirus. Initially isolated in the Tuscany region of Central Italy, it has now been detected in multiple countries that surround this geographical area. Infection of the vertebrate host can cause fever and neurological disease, following the dissemination of the virus to the brain. The prevalence is high in some regions, with a notable percentage of individuals showing seroconversion. TOSV can be a leading cause of acute meningitis and encephalitis (AME) during the summer months. In this comprehensive review, we will focus on several key topics. We discuss how TOSV has spread to establish outbreaks of infection in both humans and animals around the Mediterranean and the wider region. Clinical aspects of TOSV infection in humans are described, along with the best standards in diagnosis. Finally, we focus our discussion on the role of the sand fly vector, describing their biology, vector competency, implications for putative vertebrate reservoirs, the effect of the climate emergency on sand fly distribution and the putative role that sand fly-derived salivary factors may have on modulating host susceptibility to TOSV infection.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"105 11","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542635/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Livia Donaire, Jiatao Xie, Luca Nerva, Daohong Jiang, Shin-Yi Lee Marzano, Sead Sabanadzovic, Massimo Turina, María A Ayllón
{"title":"ICTV Virus Taxonomy Profile: <i>Botourmiaviridae</i> 2024.","authors":"Livia Donaire, Jiatao Xie, Luca Nerva, Daohong Jiang, Shin-Yi Lee Marzano, Sead Sabanadzovic, Massimo Turina, María A Ayllón","doi":"10.1099/jgv.0.002047","DOIUrl":"10.1099/jgv.0.002047","url":null,"abstract":"<p><p>The family <i>Botourmiaviridae</i> includes viruses with a mono- or multi-segmented positive-sense RNA genome that infect plants and filamentous fungi. The family includes the genera <i>Ourmiavirus</i> (plant viruses), <i>Botoulivirus</i>, <i>Betabotoulivirus</i>, <i>Magoulivirus</i>, <i>Scleroulivirus</i>, <i>Betascleroulivirus</i>, <i>Gammascleroulivirus</i>, <i>Deltascleroulivirus</i>, <i>Epsilonscleroulivirus</i>, <i>Penoulivirus</i>, <i>Rhizoulivirus</i> and <i>Betarhizoulivirus</i> (fungal viruses). This summary is based on the International Committee on Taxonomy of Viruses (ICTV) Report on the family <i>Botourmiaviridae</i>, which is available at ictv.global/report/botourmiaviridae.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"105 11","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142681924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M Fausta Dutuze, Samantha D Clark, Fabio Del Piero, Rebecca C Christofferson
{"title":"Preliminary evidence that Bunyamwera virus causes severe disease characterized by systemic vascular and multiorgan necrosis in an immunocompromised mouse model.","authors":"M Fausta Dutuze, Samantha D Clark, Fabio Del Piero, Rebecca C Christofferson","doi":"10.1099/jgv.0.002040","DOIUrl":"10.1099/jgv.0.002040","url":null,"abstract":"<p><p>Bunyamwera virus (BUNV) is the prototypical member of the Bunyamwera serogroup within the <i>Orthobunyvirus</i> genus. BUNV is transmitted by mosquito vectors of the genera <i>Culex</i>, <i>Aedes</i> and <i>Anopheles</i> and has historically circulated in East Africa, though the transmission has been observed in Argentina. BUNV has been identified as an agent of human and animal disease and has also been misdiagnosed as other agents. BUNV is often thought to be an agent of mild febrile illness in humans, though it can cause abortions in ruminants and neurological disease in horses. Joint pain and gastritis have also been attributed to BUNV. There are limited data concerning the possible spectrum of disease and extent of pathogenesis of BUNV infection, and there are currently no therapeutics or vaccines available. Furthermore, options for animal models for Orthobunyaviruses in general - of which BUNV is the prototypical member - are limited. Eight mice deficient in the type I interferon response were infected with BUNV, and all developed overt disease. All mice developed detectable viraemia and clinical signs, including weight loss, hunched posture and lethargy. Three of the eight mice developed severe diseases, including vascular necrosis and necrosis in the liver, lungs, reproductive organs, bone marrow and spleen, as well as haemorrhages (<i>n</i>=1) and severe diffuse facial oedema (<i>n</i>=3), reminiscent of the pathology of Schmallenberg and the Arenaviruses Lassa and Lujo viruses. Thus, BUNV infection of IRF3/7 DKO mice could serve as a BSL-2 model for severe diseases of higher-risk group viruses, which often must be studied at BSL-4. Additionally, our results suggest that BUNV may have the ability to cause severe disease in immunocompromised hosts. Thus, further investigation into the potential spectrum of pathogenesis due to BUNV is important to prioritize for outbreak response, diagnostics and the development of countermeasures.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"73 11","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Susann Dornbusch, Melinda Reuter, Rhys H Parry, Michael Stern, Stefanie C Becker, Esther Schnettler
{"title":"Dicer-2 mutations in <i>Aedes aegypti</i> cells lead to a diminished antiviral function against Rift Valley fever virus and Bunyamwera virus infection.","authors":"Susann Dornbusch, Melinda Reuter, Rhys H Parry, Michael Stern, Stefanie C Becker, Esther Schnettler","doi":"10.1099/jgv.0.002046","DOIUrl":"10.1099/jgv.0.002046","url":null,"abstract":"<p><p>Mosquitoes are known to transmit different arthropod-borne viruses belonging to various virus families. The exogenous small interfering RNA pathway plays an important role in the mosquito defence against such virus infections, with Dicer-2 (Dcr2) as one of the key proteins that initiates the cleavage of viral dsRNAs into 21 nt long virus-derived small interfering RNAs. Previous data identified the importance of various motifs in Dcr2 for its small interfering RNA (siRNA)-mediated antiviral activity. However, all these data focus on positive-strand RNA viruses, although negative-strand RNA viruses, like <i>Bunyaviricetes</i>, include several important mosquito-borne viruses. Here, we aim to investigate the importance of different domains of Dcr2 for antiviral activity against viruses of the <i>Bunyaviricetes</i>. For this, we used the <i>Aedes aegypti-</i>derived Dcr2 knock-out cell line Aag2-AF319 to study the importance of the helicase, RNase III and PIWI-Argonaute-Zwille domains of Dcr2 on the antiviral activity of two viruses belonging to different families of the <i>Bunyaviricetes</i>: the Rift Valley fever virus (RVFV) vaccine strain MP12 (<i>Phenuiviridae</i>, <i>Phlebovirus</i>) and the Bunyamwera orthobunyavirus (BUNV; <i>Peribunyaviridae</i>, <i>Orthobunyavirus</i>). All three domains were determined to be critical for the antiviral activity against both RVFV and BUNV. Interestingly, one specific mutation in the helicase domain (KN) did not result in a loss of antiviral activity for RVFV, but for BUNV, despite losing the ability to produce 21 nt siRNAs.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"105 11","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542633/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael C Lund, Andrew Hopkins, Anisha Dayaram, Mark L Galatowitsch, Daisy Stainton, Jon S Harding, Pierre Lefeuvre, Qiyun Zhu, Simona Kraberger, Arvind Varsani
{"title":"Diverse microviruses circulating in invertebrates within a lake ecosystem.","authors":"Michael C Lund, Andrew Hopkins, Anisha Dayaram, Mark L Galatowitsch, Daisy Stainton, Jon S Harding, Pierre Lefeuvre, Qiyun Zhu, Simona Kraberger, Arvind Varsani","doi":"10.1099/jgv.0.002049","DOIUrl":"https://doi.org/10.1099/jgv.0.002049","url":null,"abstract":"<p><p>Microviruses are single-stranded DNA bacteriophages and members of the highly diverse viral family <i>Microviridae</i>. Microviruses have a seemingly ubiquitous presence across animal gut microbiomes and other global environmental ecosystems. Most of the studies on microvirus diversity so far have been associated with vertebrate gut viromes. In this study, we investigate the less explored invertebrate microviruses in a freshwater ecosystem. We analysed microviruses from invertebrates in the Chironomidae, Gastropoda, Odonata, Sphaeriidae, Unionidae clades, as well as from water and benthic sediment sampled from a lake ecosystem in New Zealand. Using gene-sharing networks and an expanded framework of informal and proposed microvirus subfamilies, the 463 distinct microvirus genomes identified in this study were grouped as follows: 382 genomes in the <i>Gokushovirinae</i> subfamily and 47 in the Pichovirinae subfamily clade, 18 belonging to Group D, 3 belonging to the proposed Alpavirinae subfamily clade, 1 belonging to the proposed Occultatumvirinae/Tainavirinae subfamilies clade and 12 belonging to an undefined viral cluster VC 1. Inverse associations of microviruses were noted between environmental benthic sediment samples and the Odonata group, while 'defended' invertebrates in the Gastropoda, Sphaeriidae and Unionidae groups showed correlative associations in the principal coordinate analysis of unique microvirus genomes (each genome sharing <98% genome-wide pairwise identity with each other) across sample types. This study expands the known diversity of microviruses and highlights the diversity of these relatively poorly classified bacteriophages.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"105 11","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hiroko Kobayashi, Herman Chambaro, Koshiro Tabata, Takuma Ariizumi, Wallaya Phongphaew, Kunda Ndashe, Joseph Ndebe, Paul Fandamu, Shintaro Kobayashi, Naoto Ito, Michihito Sasaki, Bernard M Hang'ombe, Edgar Simulundu, Yasuko Orba, Hirofumi Sawa
{"title":"African lineage 1a West Nile virus isolated from crocodiles exhibits low neuroinvasiveness in mice.","authors":"Hiroko Kobayashi, Herman Chambaro, Koshiro Tabata, Takuma Ariizumi, Wallaya Phongphaew, Kunda Ndashe, Joseph Ndebe, Paul Fandamu, Shintaro Kobayashi, Naoto Ito, Michihito Sasaki, Bernard M Hang'ombe, Edgar Simulundu, Yasuko Orba, Hirofumi Sawa","doi":"10.1099/jgv.0.002051","DOIUrl":"10.1099/jgv.0.002051","url":null,"abstract":"<p><p>West Nile virus (WNV) is a mosquito-borne flavivirus that causes encephalitis in humans and infects crocodiles, resulting in rashes and neurological signs. In Zambia, two distinct lineages of WNV have been detected in neighbouring areas: lineage 2 in mosquitoes and lineage 1a in farmed crocodiles. Considering the risk of direct or vector-mediated WNV transmission from crocodiles to mammals, it is necessary to elucidate the pathogenicity of WNV strains derived from crocodiles. In this study, WNV was successfully isolated from naturally infected farmed crocodiles (Croc110/2019/1/ZM, Croc110). We then investigated its proliferation and pathogenicity in mice in comparison with a WNV isolate from mosquitoes in Zambia (Zmq16) and two reference strains, including one highly pathogenic (NY99) and one low pathogenic (Eg101) strain. Although viral proliferation in Vero and mammalian neuronal cells was comparable among the strains, Croc110 exhibited low cell-to-cell transmission efficiency. <i>In vivo</i>, more than 70% of mice (C57BL/6) intracerebrally inoculated with Croc110 displayed neurological signs, and Croc110-infected mice exhibited similarly high mortality rates as NY99- and Zmq16-infected mice. Meanwhile, comparable virus growth was observed among the strains in the brain. However, the virulence of Croc110 was significantly lower than that of Zmq16 and NY99 following intradermal (ID) and intraperitoneal inoculation. Consistently, Croc110 displayed lower growth than Zmq16 and NY99 in the brain and peripheral tissues after ID inoculation. Our study revealed that the crocodile-derived WNV strain is less neuroinvasive in mice, and it exhibits distinct pathogenicity from the highly pathogenic mosquito-derived WNV strain circulating in Zambia.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"105 11","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652736/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142716326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laetitia Montacq, Doriana Flores, Hélène Giummarra, Laurane Pallandre, Anaïs Angot, Rodolphe Thomas, Amélie Charrier, Laurie Lamothe, Mélanie Lesne, Carine Bellet, Nicolas Keck, Françoise Pozet, Aurélien Tocqueville, Sophie Le Bouquin-Leneveu, Jésabel Laithier, Jean K Millet, Stéphane Bertagnoli, Marine Baud, Laurent Bigarré
{"title":"cds46, a highly variable carp edema virus gene.","authors":"Laetitia Montacq, Doriana Flores, Hélène Giummarra, Laurane Pallandre, Anaïs Angot, Rodolphe Thomas, Amélie Charrier, Laurie Lamothe, Mélanie Lesne, Carine Bellet, Nicolas Keck, Françoise Pozet, Aurélien Tocqueville, Sophie Le Bouquin-Leneveu, Jésabel Laithier, Jean K Millet, Stéphane Bertagnoli, Marine Baud, Laurent Bigarré","doi":"10.1099/jgv.0.002048","DOIUrl":"10.1099/jgv.0.002048","url":null,"abstract":"<p><p>Carp edema virus disease (CEVD) is a severe viral illness that causes substantial economic losses in wild and farmed common carp and koi. It is caused by carp edema virus (CEV), a member of the <i>Poxviridae</i> family<i>,</i> whose genetic diversity and genome evolution are poorly understood. Based on a genomic fragment of the <i>4a</i> gene, two genogroups, genogroup I (gI) and genogroup II (gII), have been identified in samples of different origins. By analysing a series of recent samples, we highlight here a new genomic region of interest that varies by substitutions, indels and putative recombinations. In the Japanese reference sequence, this region encodes an ORF, cds46, whose function is unknown despite weak homologies with genes of some members of the <i>Iridoviridae</i>. Surprisingly, AlphaFold protein structure prediction analyses link cds46-encoded ORF with cellular endonucleases, providing insights into its possible origin. The ORF is absent in all gI haplotypes and in some gII haplotypes. Apart from the absence of cds46, gI haplotypes show an insertion of 121 bp with no homology to any viral sequence. When present, cds46 showed two groups of alleles differentiated by substitutions. The analysis of the cds46 locus showed that some samples from fish batches contained mixes of different haplotypes, irrespective of their origin (i.e. France, Japan or Israel). In a 2023 sample, we also found a virus carrying a gII-like atypical <i>4a</i> allele first identified in France in 2015, indicating the limited but persistent spread of this virus in the country. The cds46 locus is a new target that may be useful for identifying and tracking CEV haplotypes.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"105 11","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578112/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}