{"title":"Aging Mongolian pine plantations face high risks of drought-induced growth decline: evidence from both individual tree and forest stand measurements","authors":"Mingyong Li, Leilei Yang, Yu Cao, Dedong Wu, Guangyou Hao","doi":"10.1007/s11676-023-01677-4","DOIUrl":"https://doi.org/10.1007/s11676-023-01677-4","url":null,"abstract":"<p>Discerning vulnerability differences among different aged trees to drought-driven growth decline or to mortality is critical to implement age-specific countermeasures for forest management in water-limited areas. An important species for afforestation in dry environments of northern China, Mongolian pine (<i>Pinus sylvestris</i> var. <i>mongolica</i> Litv.) has recently exhibited growth decline and dieback on many sites, particularly pronounced in old-growth plantations. However, changes in response to drought stress by this species with age as well as the underlying mechanisms are poorly understood. In this study, tree-ring data and remotely sensed vegetation data were combined to investigate variations in growth at individual tree and stand scales for young (9 − 13 years) and aging (35 − 52 years) plantations of Mongolian pine in a water-limited area of northern China. A recent decline in tree-ring width in the older plantation also had lower values in satellited-derived normalized difference vegetation indices and normalized difference water indices relative to the younger plantations. In addition, all measured growth-related metrics were strongly correlated with the self-calibrating Palmer drought severity index during the growing season in the older plantation. Sensitivity of growth to drought of the older plantation might be attributed to more severe hydraulic limitations, as reflected by their lower sapwood- and leaf-specific hydraulic conductivities. Our study presents a comprehensive view on changes of growth with age by integrating multiple methods and provides an explanation from the perspective of plant hydraulics for growth decline with age. The results indicate that old-growth Mongolian pine plantations in water-limited environments may face increased growth declines under the context of climate warming and drying.</p>","PeriodicalId":15830,"journal":{"name":"Journal of Forestry Research","volume":"7 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139554226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"April–September minimum temperature reconstruction based on Sabina tibetica ring-width chronology in the central eastern Tibetan Plateau, China","authors":"Teng Li, Jianfeng Peng, Tsun Fung Au, Jinbao Li","doi":"10.1007/s11676-023-01682-7","DOIUrl":"https://doi.org/10.1007/s11676-023-01682-7","url":null,"abstract":"<p>Minimum temperatures have remarkable impacts on tree growth at high-elevation sites on the Tibetan Plateau, but the shortage of long-term and high-resolution paleoclimate records inhibits understanding of recent minimum temperature anomalies. In this study, a warm season (April–September) reconstruction is presented for the past 467 years (1550–2016) based on <i>Sabina tibetica</i> ring-width chronology on the Lianbaoyeze Mountain of the central eastern Tibetan Plateau. Eight warm periods and eight cold periods were identified. Long-term minimum temperature variations revealed a high degree of coherence with nearby reconstructions. Spatial correlations between our reconstruction and global sea surface temperatures suggest that warm season minimum temperature anomalies in the central eastern Tibetan Plateau were strongly influenced by large-scale ocean atmospheric circulations, such as the El Niño-Southern Oscillation and the Atlantic Multidecadal Oscillation.</p>","PeriodicalId":15830,"journal":{"name":"Journal of Forestry Research","volume":"16 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139507681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ellinoora Ekman, María Triviño, Clemens Blattert, Adriano Mazziotta, Maria Potterf, Kyle Eyvindson
{"title":"Disentangling the effects of management and climate change on habitat suitability for saproxylic species in boreal forests","authors":"Ellinoora Ekman, María Triviño, Clemens Blattert, Adriano Mazziotta, Maria Potterf, Kyle Eyvindson","doi":"10.1007/s11676-023-01678-3","DOIUrl":"https://doi.org/10.1007/s11676-023-01678-3","url":null,"abstract":"<p>Forest degradation induced by intensive forest management and temperature increase by climate change are resulting in biodiversity decline in boreal forests. Intensive forest management and high-end climate emission scenarios can further reduce the amount and diversity of deadwood, the limiting factor for habitats for saproxylic species in European boreal forests. The magnitude of their combined effects and how changes in forest management can affect deadwood diversity under a range of climate change scenarios are poorly understood. We used forest growth simulations to evaluate how forest management and climate change will individually and jointly affect habitats of red-listed saproxylic species in Finland. We simulated seven forest management regimes and three climate scenarios (reference, RCP4.5 and RCP8.5) over 100 years. Management regimes included set aside, <i>continuous cover forestry</i>, <i>business-as-usual</i> (BAU) and four modifications of BAU. Habitat suitability was assessed using a species-specific habitat suitability index, including 21 fungal and invertebrate species groups. “Winner” and “loser” species were identified based on the modelled impacts of forest management and climate change on their habitat suitability. We found that forest management had a major impact on habitat suitability of saproxylic species compared to climate change. Habitat suitability index varied by over 250% among management regimes, while overall change in habitat suitability index caused by climate change was on average only 2%. More species groups were identified as winners than losers from impacts of climate change (52%–95% were winners, depending on the climate change scenario and management regime). The largest increase in habitat suitability index was achieved under <i>set aside</i> (254%) and the climate scenario RCP8.5 (> 2%), while <i>continuous cover forestry</i> was the most suitable regime to increase habitat suitability of saproxylic species (up to + 11%) across all climate change scenarios. Our results show that close-to-nature management regimes (e.g., <i>continuous cover forestry</i> and <i>set aside</i>) can increase the habitat suitability of many saproxylic boreal species more than the basic <i>business-as-usual</i> regime. This suggests that biodiversity loss of many saproxylic species in boreal forests can be mitigated through improved forest management practices, even as climate change progresses.</p>","PeriodicalId":15830,"journal":{"name":"Journal of Forestry Research","volume":"11 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139422734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuanyuan Wang, Xinzhu Dai, Xingling Chen, Dan Zhang, Guiqing Lin, Yuanhang Zhou, Tianyi Wang, Yulong Cui
{"title":"Effects of urbanization and forest type on species composition and diversity, forest characteristics, biomass carbon sink, and their associations in Changchun, Northeast China: implications for urban carbon stock improvement","authors":"Yuanyuan Wang, Xinzhu Dai, Xingling Chen, Dan Zhang, Guiqing Lin, Yuanhang Zhou, Tianyi Wang, Yulong Cui","doi":"10.1007/s11676-023-01688-1","DOIUrl":"https://doi.org/10.1007/s11676-023-01688-1","url":null,"abstract":"<p>Differences in forest attributes and carbon sequestration of each organ and layer between broadleaved and conifer forests of central and outer urban areas are not well-defined, hindering the precise management of urban forests and improvement of function. To clarify the effect of two forest types with different urbanization intensities, we determined differences in vegetation composition and diversity, structural traits, and carbon stocks of 152 plots (20 m × 20 m) in urban park forests in Changchun, which had the largest green quantity and carbon density effectiveness. We found that 1.1-fold thicker and healthier trees, and 1.6- to 2.0-fold higher, healthier, denser, and more various shrubs but with sparser trees and herbs occurred in the central urban forests (<i>p</i> < 0.05) than in the outer forests. The conifer forests exhibited 30–70% obviously higher tree aboveground carbon sequestration (including stem and leaf) and 20% bigger trees, especially in the outer forests (<i>p</i> < 0.05). In contrast, 1.1- to 1.5-fold higher branch stocks, healthier and more diverse trees were found in broadleaved forests of both the inner and outer forests (<i>p</i> < 0.05). Plant size and dominant species had similarly important roles in carbon stock improvement, especially big-sized woody plants and <i>Pinus tabuliformis.</i> In addition, a higher number of deciduous or needle species positively affected the broadleaved forest of the central urban area and conifer forest of the outer urban area, respectively. These findings can be used to guide precise management and accelerate the improvement of urban carbon function in Northeast China in the future. </p>","PeriodicalId":15830,"journal":{"name":"Journal of Forestry Research","volume":"18 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139421304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zezhou Hao, Chengyun Zhang, Le Li, Bing Sun, Shuixing Luo, Juyang Liao, Qingfei Wang, Ruichen Wu, Xinhui Xu, Christopher A. Lepczyk, Nancai Pei
{"title":"Can urban forests provide acoustic refuges for birds? Investigating the influence of vegetation structure and anthropogenic noise on bird sound diversity","authors":"Zezhou Hao, Chengyun Zhang, Le Li, Bing Sun, Shuixing Luo, Juyang Liao, Qingfei Wang, Ruichen Wu, Xinhui Xu, Christopher A. Lepczyk, Nancai Pei","doi":"10.1007/s11676-023-01689-0","DOIUrl":"https://doi.org/10.1007/s11676-023-01689-0","url":null,"abstract":"<p>As a crucial component of terrestrial ecosystems, urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces. Previous studies note that vegetation structure is a key factor influencing bird sounds in urban forests; hence, adjusting the frequency composition may be a strategy for birds to avoid anthropogenic noise to mask their songs. However, it is unknown whether the response mechanisms of bird vocalizations to vegetation structure remain consistent despite being impacted by anthropogenic noise. It was hypothesized that anthropogenic noise in urban forests occupies the low-frequency space of bird songs, leading to a possible reshaping of the acoustic niches of forests, and the vegetation structure of urban forests is the critical factor that shapes the acoustic space for bird vocalization. Passive acoustic monitoring in various urban forests was used to monitor natural and anthropogenic noises, and sounds were classified into three acoustic scenes (bird sounds, human sounds, and bird-human sounds) to determine interconnections between bird sounds, anthropogenic noise, and vegetation structure. Anthropogenic noise altered the acoustic niche of urban forests by intruding into the low-frequency space used by birds, and vegetation structures related to volume (trunk volume and branch volume) and density (number of branches and leaf area index) significantly impact the diversity of bird sounds. Our findings indicate that the response to low and high frequency signals to vegetation structure is distinct. By clarifying this relationship, our results contribute to understanding of how vegetation structure influences bird sounds in urban forests impacted by anthropogenic noise.</p>","PeriodicalId":15830,"journal":{"name":"Journal of Forestry Research","volume":"40 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139413781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Physiological and psychological responses to tended plant communities with varying color characteristics","authors":"Siyuan Zheng, Yanzhen Zhou, Haiyan Qu","doi":"10.1007/s11676-023-01683-6","DOIUrl":"https://doi.org/10.1007/s11676-023-01683-6","url":null,"abstract":"<p>Exposure to plants has been reported to promote health and reduce stress, and plant color has direct impacts on physical and mental health. We used images of common types of tended plant communities in Shenyang, China, with combinations of yellow, green, and red foliage, as experimental stimuli. A total of 27 images were used as visual stimuli. We used electroencephalography to measure α wave activity (8–13 Hz) in 40 subjects while they viewed visual stimuli. These data were combined with subjective questionnaire data to analyze the relaxing effect of images of tended plant communities with different color types and proportions on people. The results revealed that, although there were slight differences between the electroencephalography and psychological findings, women were significantly more relaxed than men after viewing the images. Physiological and psychological responses varied with the types and proportions of colors in the tended plant communities: those of foliage with combinations of two or three colors induced stronger responses than images with a single color. Specifically, (1) for one-color plant communities, green or yellow plant communities induced a stronger relaxation effect than red plant communities; (2) for two-color plant communities, the optimal color proportion was 55% + 45%, and the green + yellow and green + red color combinations induced a stronger relaxation effect; (3) for three-color plant communities, the relaxation effect was strongest when the color proportion was 55% green + 25% yellow + 20% red. These data would provide a plant color matching in future plant landscape design, which may be helpful for creating healthy and relaxing environments.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":15830,"journal":{"name":"Journal of Forestry Research","volume":"81 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139103987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Zhang, Brady K. Quinn, Cang Hui, Meng Lian, Johan Gielis, Jie Gao, Peijian Shi
{"title":"New indices to balance α-diversity against tree size inequality","authors":"Li Zhang, Brady K. Quinn, Cang Hui, Meng Lian, Johan Gielis, Jie Gao, Peijian Shi","doi":"10.1007/s11676-023-01686-3","DOIUrl":"https://doi.org/10.1007/s11676-023-01686-3","url":null,"abstract":"<p>The number and composition of species in a community can be quantified with α-diversity indices, including species richness (<i>R</i>), Simpson’s index (<i>D</i>), and the Shannon–Wiener index (<i>H΄</i>). In forest communities, there are large variations in tree size among species and individuals of the same species, which result in differences in ecological processes and ecosystem functions. However, tree size inequality (TSI) has been largely neglected in studies using the available diversity indices. The TSI in the diameter at breast height (DBH) data for each of 999 20 m × 20 m forest census quadrats was quantified using the Gini index (GI), a measure of the inequality of size distribution. The generalized performance equation was used to describe the rotated and right-shifted Lorenz curve of the cumulative proportion of DBH and the cumulative proportion of number of trees per quadrat. We also examined the relationships of α-diversity indices with the GI using correlation tests. The generalized performance equation effectively described the rotated and right-shifted Lorenz curve of DBH distributions, with most root-mean-square errors (990 out of 999 quadrats) being < 0.0030. There were significant positive correlations between each of three α-diversity indices (i.e., <i>R</i>, <i>D</i>, and <i>H'</i>) and the GI. Nevertheless, the total abundance of trees in each quadrat did not significantly influence the GI. This means that the TSI increased with increasing species diversity. Thus, two new indices are proposed that can balance α-diversity against the extent of TSI in the community: (1 − GI) × <i>D</i>, and (1 − GI) × <i>H'</i>. These new indices were significantly correlated with the original <i>D</i> and <i>H΄</i>, and did not increase the extent of variation within each group of indices. This study presents a useful tool for quantifying both species diversity and the variation in tree sizes in forest communities, especially in the face of cumulative species loss under global climate change.</p>","PeriodicalId":15830,"journal":{"name":"Journal of Forestry Research","volume":"5 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139054450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hemelyn Soares das Chagas, Rafael Silva Guedes, Markus Gastauer, Paula Godinho Ribeiro, Allan Klynger da Silva Lobato, Cecílio Frois Caldeira, Fabrício William de Ávila, André Rodrigues dos Reis, Silvio Junio Ramos
{"title":"Plant growth and metabolism of exotic and native Crotalaria species for mine land rehabilitation in the Amazon","authors":"Hemelyn Soares das Chagas, Rafael Silva Guedes, Markus Gastauer, Paula Godinho Ribeiro, Allan Klynger da Silva Lobato, Cecílio Frois Caldeira, Fabrício William de Ávila, André Rodrigues dos Reis, Silvio Junio Ramos","doi":"10.1007/s11676-023-01676-5","DOIUrl":"https://doi.org/10.1007/s11676-023-01676-5","url":null,"abstract":"<p>Despite its enormous benefits, mining is responsible for intense changes to vegetation and soil properties. Thus, after extraction, it is necessary to rehabilitate the mined areas, creating better conditions for the establishment of plant species which is challenging. This study evaluated mineral and organic fertilization on the growth, and carbon and nitrogen (N) metabolism of two <i>Crotalaria</i> species [<i>Crotalaria spectabilis</i> (exotic species) and <i>Crotalaria maypurensis</i> (native species from Carajás Mineral Province (CMP)] established on a waste pile from an iron mine in CMP. A control (without fertilizer application) and six fertilization mixtures were tested (i = NPK; ii = NPK + micronutrients; iii = NPK + micronutrients + organic compost; iv = PK; v = PK + micronutrients; vi = PK + micronutrients + organic compost). Fertilization contributed to increased growth of both species, and treatments with NPK and micronutrients had the best results (up to 257% cf. controls), while organic fertilization did not show differences. Exotic <i>Crotalaria</i> had a greater number of nodules, higher nodule dry mass, chlorophyll<i> a</i> and <i>b</i> contents and showed free ammonium as the predominant N form, reflecting greater increments in biomass compared to native species. Although having lower growth, the use of this native species in the rehabilitation of mining areas should be considered, mainly because it has good development and meets current government legislation as an opportunity to restore local biodiversity.</p>","PeriodicalId":15830,"journal":{"name":"Journal of Forestry Research","volume":"311 3 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139031617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nitrogen mineralization in the oldest climax communities in the eastern Mediterranean region","authors":"Fatma Selcen Sakar, Gürcan Güleryüz","doi":"10.1007/s11676-023-01685-4","DOIUrl":"https://doi.org/10.1007/s11676-023-01685-4","url":null,"abstract":"<p>In this study, we investigated how tree species affect N mineralization in connection to some soil properties and seconder metabolite levels of litter, in the soil of the oldest native forest communities. In the oldest pure communities of <i>Pinus nigra</i> (PN), <i>Fagus orientalis</i> (FO), and <i>Abies bornmuelleriana</i> (AB) in the mountain range of Mount Uludağ, Bursa, Turkey, annual net yield and N mineralization in the 0–5- and 5–20-cm soil layers were determined in a field incubation study over 1 year. Sampling locations were chosen from 1300 to 1600 m a.s.l., and moisture content (%), pH, water-holding capacity (%), organic C, total N, and C/N ratio, and annual net mineral N yield of the soil and hydrolyzed tannic acid and total phenolic compounds in litter were compared for these forest communities. <i>F. orientalis</i> had the highest annual net Nmin yield (43.9 ± 4.8 kg ha<sup>–1</sup> a<sup>–1</sup>), <i>P. nigra</i> the lowest (30.5 ± 4.2 kg ha<sup>–1</sup> a<sup>–1</sup>). Our findings show that in the oldest forest ecosystems, the seasonal soil moisture content and tree species play an essential role in N cycling and that hydrolyzed tannic acids and total phenolic compounds effectively control N turnover. Tannic acid and total phenolics in the litter were found to inhibit nitrification, but total phenolics were found to stimulate ammonification.</p>","PeriodicalId":15830,"journal":{"name":"Journal of Forestry Research","volume":"54 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139017900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dayang Nur Sakinah Musa, Mohd Zahirasri Mohd Tohir, Xinyan Huang, Luqman Chuah Abdullah, Mohamad Syazaruddin Md Said, Muhammad Firdaus Sulaiman
{"title":"Peat properties of a tropical forest reserve adjacent to a fire-break canal","authors":"Dayang Nur Sakinah Musa, Mohd Zahirasri Mohd Tohir, Xinyan Huang, Luqman Chuah Abdullah, Mohamad Syazaruddin Md Said, Muhammad Firdaus Sulaiman","doi":"10.1007/s11676-023-01679-2","DOIUrl":"https://doi.org/10.1007/s11676-023-01679-2","url":null,"abstract":"<p>Tropical peat comprises decomposed dead plant material and acts like a sponge to absorb water, making it fully saturated. However, drought periods dry it readily and increases its vulnerability to fire. Peat fires emit greenhouse gases and particles contributing to haze, and prevention by constructing fire-break canals to reduce fire spread into forest reserves is crucial. This paper aims to determine peat physical and chemical properties near a fire-break canal at different fire frequency areas. Peat sampling was conducted at two forest reserves in Malaysia which represent low fire frequency and high fire frequency areas. The results show that peat properties were not affected by the construction of a fire-break canal, however lignin and cellulose content increased significantly from the distance of the canal in both areas. The study concluded that fire frequency did not significantly influence peat properties except for porosity. The higher fibre content in the high frequency area did not influence moisture content nor the ability to regain moisture. Thus, fire frequency might contribute differently to changes in physical and chemical properties, hence management efforts to construct fire- break canals and restoration efforts should protect peatlands from further degradation. These findings will benefit future management and planning for forest reserves.</p>","PeriodicalId":15830,"journal":{"name":"Journal of Forestry Research","volume":"54 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139017929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}