Zezhou Hao, Chengyun Zhang, Le Li, Bing Sun, Shuixing Luo, Juyang Liao, Qingfei Wang, Ruichen Wu, Xinhui Xu, Christopher A. Lepczyk, Nancai Pei
{"title":"城市森林能否为鸟类提供声学庇护所?研究植被结构和人为噪音对鸟类声音多样性的影响","authors":"Zezhou Hao, Chengyun Zhang, Le Li, Bing Sun, Shuixing Luo, Juyang Liao, Qingfei Wang, Ruichen Wu, Xinhui Xu, Christopher A. Lepczyk, Nancai Pei","doi":"10.1007/s11676-023-01689-0","DOIUrl":null,"url":null,"abstract":"<p>As a crucial component of terrestrial ecosystems, urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces. Previous studies note that vegetation structure is a key factor influencing bird sounds in urban forests; hence, adjusting the frequency composition may be a strategy for birds to avoid anthropogenic noise to mask their songs. However, it is unknown whether the response mechanisms of bird vocalizations to vegetation structure remain consistent despite being impacted by anthropogenic noise. It was hypothesized that anthropogenic noise in urban forests occupies the low-frequency space of bird songs, leading to a possible reshaping of the acoustic niches of forests, and the vegetation structure of urban forests is the critical factor that shapes the acoustic space for bird vocalization. Passive acoustic monitoring in various urban forests was used to monitor natural and anthropogenic noises, and sounds were classified into three acoustic scenes (bird sounds, human sounds, and bird-human sounds) to determine interconnections between bird sounds, anthropogenic noise, and vegetation structure. Anthropogenic noise altered the acoustic niche of urban forests by intruding into the low-frequency space used by birds, and vegetation structures related to volume (trunk volume and branch volume) and density (number of branches and leaf area index) significantly impact the diversity of bird sounds. Our findings indicate that the response to low and high frequency signals to vegetation structure is distinct. By clarifying this relationship, our results contribute to understanding of how vegetation structure influences bird sounds in urban forests impacted by anthropogenic noise.</p>","PeriodicalId":15830,"journal":{"name":"Journal of Forestry Research","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can urban forests provide acoustic refuges for birds? Investigating the influence of vegetation structure and anthropogenic noise on bird sound diversity\",\"authors\":\"Zezhou Hao, Chengyun Zhang, Le Li, Bing Sun, Shuixing Luo, Juyang Liao, Qingfei Wang, Ruichen Wu, Xinhui Xu, Christopher A. Lepczyk, Nancai Pei\",\"doi\":\"10.1007/s11676-023-01689-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As a crucial component of terrestrial ecosystems, urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces. Previous studies note that vegetation structure is a key factor influencing bird sounds in urban forests; hence, adjusting the frequency composition may be a strategy for birds to avoid anthropogenic noise to mask their songs. However, it is unknown whether the response mechanisms of bird vocalizations to vegetation structure remain consistent despite being impacted by anthropogenic noise. It was hypothesized that anthropogenic noise in urban forests occupies the low-frequency space of bird songs, leading to a possible reshaping of the acoustic niches of forests, and the vegetation structure of urban forests is the critical factor that shapes the acoustic space for bird vocalization. Passive acoustic monitoring in various urban forests was used to monitor natural and anthropogenic noises, and sounds were classified into three acoustic scenes (bird sounds, human sounds, and bird-human sounds) to determine interconnections between bird sounds, anthropogenic noise, and vegetation structure. Anthropogenic noise altered the acoustic niche of urban forests by intruding into the low-frequency space used by birds, and vegetation structures related to volume (trunk volume and branch volume) and density (number of branches and leaf area index) significantly impact the diversity of bird sounds. Our findings indicate that the response to low and high frequency signals to vegetation structure is distinct. By clarifying this relationship, our results contribute to understanding of how vegetation structure influences bird sounds in urban forests impacted by anthropogenic noise.</p>\",\"PeriodicalId\":15830,\"journal\":{\"name\":\"Journal of Forestry Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Forestry Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11676-023-01689-0\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forestry Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11676-023-01689-0","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Can urban forests provide acoustic refuges for birds? Investigating the influence of vegetation structure and anthropogenic noise on bird sound diversity
As a crucial component of terrestrial ecosystems, urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces. Previous studies note that vegetation structure is a key factor influencing bird sounds in urban forests; hence, adjusting the frequency composition may be a strategy for birds to avoid anthropogenic noise to mask their songs. However, it is unknown whether the response mechanisms of bird vocalizations to vegetation structure remain consistent despite being impacted by anthropogenic noise. It was hypothesized that anthropogenic noise in urban forests occupies the low-frequency space of bird songs, leading to a possible reshaping of the acoustic niches of forests, and the vegetation structure of urban forests is the critical factor that shapes the acoustic space for bird vocalization. Passive acoustic monitoring in various urban forests was used to monitor natural and anthropogenic noises, and sounds were classified into three acoustic scenes (bird sounds, human sounds, and bird-human sounds) to determine interconnections between bird sounds, anthropogenic noise, and vegetation structure. Anthropogenic noise altered the acoustic niche of urban forests by intruding into the low-frequency space used by birds, and vegetation structures related to volume (trunk volume and branch volume) and density (number of branches and leaf area index) significantly impact the diversity of bird sounds. Our findings indicate that the response to low and high frequency signals to vegetation structure is distinct. By clarifying this relationship, our results contribute to understanding of how vegetation structure influences bird sounds in urban forests impacted by anthropogenic noise.
期刊介绍:
The Journal of Forestry Research (JFR), founded in 1990, is a peer-reviewed quarterly journal in English. JFR has rapidly emerged as an international journal published by Northeast Forestry University and Ecological Society of China in collaboration with Springer Verlag. The journal publishes scientific articles related to forestry for a broad range of international scientists, forest managers and practitioners.The scope of the journal covers the following five thematic categories and 20 subjects:
Basic Science of Forestry,
Forest biometrics,
Forest soils,
Forest hydrology,
Tree physiology,
Forest biomass, carbon, and bioenergy,
Forest biotechnology and molecular biology,
Forest Ecology,
Forest ecology,
Forest ecological services,
Restoration ecology,
Forest adaptation to climate change,
Wildlife ecology and management,
Silviculture and Forest Management,
Forest genetics and tree breeding,
Silviculture,
Forest RS, GIS, and modeling,
Forest management,
Forest Protection,
Forest entomology and pathology,
Forest fire,
Forest resources conservation,
Forest health monitoring and assessment,
Wood Science and Technology,
Wood Science and Technology.