Journal of Fire Sciences最新文献

筛选
英文 中文
An experimental case study of escooter fire in a four-story building 四层楼房中的逃生车火灾实验案例研究
IF 1.9 4区 工程技术
Journal of Fire Sciences Pub Date : 2024-09-06 DOI: 10.1177/07349041241268991
XY Liu, MX Ma, ZL Wei, HS Zhen, YL Wang
{"title":"An experimental case study of escooter fire in a four-story building","authors":"XY Liu, MX Ma, ZL Wei, HS Zhen, YL Wang","doi":"10.1177/07349041241268991","DOIUrl":"https://doi.org/10.1177/07349041241268991","url":null,"abstract":"Driven by the necessity to understand the fire and smoke dispersion characteristics of electric bicycle (escooter) fires and their effects on residents’ safety in rural houses, this study was conducted to perform full-scale fire experiments in a village house in Hainan, People’s Republic of China. The tested building is a typical multi-story building representative of rural houses in southern China. It is found that an escooter fire grows rapidly once its lithium-ion battery is overcharged to ignite. Inside the stairwell where the escooters are parked, a significant increase in temperature over 60°C across all floors is observed and the maximum temperature reaches up to 800°C on the first floor. Furthermore, the propagation of smoke is fast, reaching the upper floors within 5 minutes and filling the entire building within 7 minutes. Due to stack effect, carbon monoxide concentration is the highest on the fourth floor, notably higher than the other floors. Closing the doors of rooms where occupants are typically present is found to effectively block heat and smoke transfer. Thus, in case an escooter’s lithium-ion battery undergoes explosion combustion, it is better that residents stay in rooms by closing or even sealing the doors, waiting for help during most of the fire period. However, in case the lithium-ion battery has not been burning, there still are chances for evacuation or putting out the flame.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measuring the fire growth potential of combustible solids using a cone calorimeter 使用锥形量热计测量可燃固体的火势增长潜力
IF 1.9 4区 工程技术
Journal of Fire Sciences Pub Date : 2024-07-27 DOI: 10.1177/07349041241263507
Richard E Lyon
{"title":"Measuring the fire growth potential of combustible solids using a cone calorimeter","authors":"Richard E Lyon","doi":"10.1177/07349041241263507","DOIUrl":"https://doi.org/10.1177/07349041241263507","url":null,"abstract":"The fire growth rate of interior linings, furnishings, and construction materials is measured in full-scale fire tests such as the ASTM E84 Steiner Tunnel, the ISO 9705 room fire, and a passenger aircraft fuselage as the flame-spread rate, time-to-flashover, or time to incapacitation, respectively. The results are used to indicate the level of passive fire protection afforded by the combustible material or product in the test without providing any insight into the burning process. These large-scale tests require many square meters of product, are very expensive to conduct, and can exhibit poor repeatability–making them unsuitable for product development, quality control, product surveillance, or regulatory compliance. For this reason, smaller (0.01 m2) samples are tested in bench-scale fire calorimeters under controlled conditions, and these one-dimensional burning histories are correlated with the results of the two- and three-dimensional burning histories in full-scale fire tests by a variety of empirical and semi-empirical fire propagation indices, as well as analytic and computer models specific to the full-scale fire test. The approach described here defines the potential of a material to grow a fire in terms of cone calorimeter data obtained under standard conditions. The fire growth potential, λ (m2/J), is the coupled process of surface flame spread and in-depth burning that is defined as the product of ignitability (1/ E ign) and combustibility (Δ Q/Δ E) obtained from a combustion energy diagram measured in a cone calorimeter at an external radiant energy flux [Formula: see text] (W/m2) above the critical flux for burning, [Formula: see text]. However, the potential for fire growth, λ≡ (1/ Ei gn)(Δ Q/Δ E) is only realized as a hazard when the heat of combustion of the product per unit surface area, Hc (J/m2), is sufficient to grow the fire. The dimensionless fire hazard of a combustible product of thickness b is therefore, Π = λ Hc, while the fire hazard of the component materials is an average over the product thickness, π = Π/ b. The measurement of λ, Π, and π from combustion energy diagrams of heat release Q (J/m2) versus incident energy E (J/m2) is described, as well as a physical basis for a fire growth potential that provides simple analytic forms for λ in terms of the parameters reported in cone calorimeter tests. Experimental data from the literature show that rapid fire growth in full-scale fire tests of combustible materials occurs above a value of Π determined by the severity of the fire test.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141797992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduced scale test bench for investigating the upward flame heat impact on external thermal insulation composite system facades 用于研究火焰上升热量对外墙外保温复合系统影响的缩小比例试验台
IF 1.9 4区 工程技术
Journal of Fire Sciences Pub Date : 2024-07-26 DOI: 10.1177/07349041241259989
Mingwei Tang, Thomas Rogaume, Benjamin Batiot, Tsilla Bensabath, Serge Bourbigot
{"title":"Reduced scale test bench for investigating the upward flame heat impact on external thermal insulation composite system facades","authors":"Mingwei Tang, Thomas Rogaume, Benjamin Batiot, Tsilla Bensabath, Serge Bourbigot","doi":"10.1177/07349041241259989","DOIUrl":"https://doi.org/10.1177/07349041241259989","url":null,"abstract":"The project aimed to develop a reduced scale test protocol designed to be repeatable and capable of providing the upward fire evaluation for assessing fire risk on external thermal insulation composite system facade samples. The variation of heat flux is simulated by radiant panel. This experimental setup permits the recording of dynamic variables in flame propagation, such as ignition time, flame extinguishing time, and variations in both surface and back temperatures of the insulation panel. Notably, the measurement of back temperature provides a means to assess the thermal insulation efficiency of the external thermal insulation composite system facade. Furthermore, the fire spreading temperature is collected during the test could also be useful for larger-scale testing.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141779566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational study on the glowing combustion of a wooden ember landing on a non-reacting substrate 木质微光落在非反应基质上的发光燃烧计算研究
IF 1.9 4区 工程技术
Journal of Fire Sciences Pub Date : 2024-06-10 DOI: 10.1177/07349041241256986
Jiuling Yang, Xiaofeng Peng, James Urban, Wei Huang, Haoliang Wang, Shaojia Wang, Yuqi Hu
{"title":"Computational study on the glowing combustion of a wooden ember landing on a non-reacting substrate","authors":"Jiuling Yang, Xiaofeng Peng, James Urban, Wei Huang, Haoliang Wang, Shaojia Wang, Yuqi Hu","doi":"10.1177/07349041241256986","DOIUrl":"https://doi.org/10.1177/07349041241256986","url":null,"abstract":"Despite the increasing frequency in spot ignition by embers in wildfires, research on the multiple physicochemical processes intrinsic to ember combustion is limited. In this study, a two-dimensional computational model was proposed to study the glowing combustion of a wooden ember. A global char oxidation reaction was used to represent the glowing combustion of the ember. A parametric study showed that the porosity, heat of reaction, and oxygen concentration were the most influential parameters on the ember combustion. Then, the model was compared to a series of bench-scale experiments in terms of glowing time and thermal response of a non-reacting substrate when exposed to a hot ember. The simulation results showed that ember combustion was mostly diffusion-controlled rather than kinetic-controlled. Thus, given the ember diversities in spotting fire, modelers should pay more attention to the difference in the physical properties instead of the kinetics between ember species.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141360968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fire-induced flows for complex fire scenarios in a mechanically ventilated two-storey structure 机械通风的两层结构中复杂火灾情况下的火灾诱发流量
IF 1.9 4区 工程技术
Journal of Fire Sciences Pub Date : 2024-06-10 DOI: 10.1177/07349041241256796
H. Prétrel, S. Vaux
{"title":"Fire-induced flows for complex fire scenarios in a mechanically ventilated two-storey structure","authors":"H. Prétrel, S. Vaux","doi":"10.1177/07349041241256796","DOIUrl":"https://doi.org/10.1177/07349041241256796","url":null,"abstract":"This work deals with smoke propagation through a multi-compartment assembly in case of a fire event in a nuclear installation. The scientific issues are the understanding of flows involving two modes of propagation (vent and doorway), together with the role of mechanical ventilation and oxygen backflows to the fire. The study is based on the analysis of two scenarios reproduced experimentally at large scale and simulated numerically. The main outcomes concern the comparison of the flow at a doorway and at a vent, the consequence of the smoke propagation for thermal stratification and the combined effect of the fire heat release rate and mechanical ventilation. The results highlight the performance of computational fluid dynamics simulations in predicting these complex scenarios. Low-velocity flow zones are identified, enabling the structure of these flows and their amplitudes to be quantified. This information provides new insights to improve fire risk assessment in nuclear facilities.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141363405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal response of timber connections using densified wood dowels under fire 使用强化木钉的木材连接在火灾下的热响应
IF 1.9 4区 工程技术
Journal of Fire Sciences Pub Date : 2024-06-06 DOI: 10.1177/07349041241257262
M. Khelifa, Trong Tuan Tran, A. Khennane, M. Oudjène, Y. Rogaume
{"title":"Thermal response of timber connections using densified wood dowels under fire","authors":"M. Khelifa, Trong Tuan Tran, A. Khennane, M. Oudjène, Y. Rogaume","doi":"10.1177/07349041241257262","DOIUrl":"https://doi.org/10.1177/07349041241257262","url":null,"abstract":"A new type of timber connection using densified wood dowels is being developed and tested. The procedure involves inserting these densified dowels into pre-drilled holes. As this connection technique is in its early stages, a unique design approach is necessary, considering the impact of temperature variations. The primary goal is to characterize the thermal behaviour of these connections under elevated temperatures. The study employs an experimental approach, complemented by numerical analysis, innovatively applying kinetic models, commonly used for investigating heat-related biomass characteristics, to wood. The method requires the use of thermogravimetric analysis to identify the kinetic parameters. The proposed pyrolysis kinetic model has been implemented in the Abaqus/Implicit code via a user subroutine UMATHT. The study concludes that using kinetic models enhances accuracy by considering mass loss, a key factor influencing thermal properties. Simulation successfully replicates temperature distribution and charred layer thickness, crucial for designing timber structures.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141379712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of parameter variation intervals on pyrolysis sensitivity analysis for charring and non-charring materials 参数变化区间对炭化和非炭化材料热解敏感性分析的影响
IF 1.9 4区 工程技术
Journal of Fire Sciences Pub Date : 2024-05-28 DOI: 10.1177/07349041241248080
Abdenour Amokrane, Manon Fleurotte, Ali Hodroj, Olivier Authier, Gérald Debenest, Gaëlle Fontaine, Serge Bourbigot
{"title":"Influence of parameter variation intervals on pyrolysis sensitivity analysis for charring and non-charring materials","authors":"Abdenour Amokrane, Manon Fleurotte, Ali Hodroj, Olivier Authier, Gérald Debenest, Gaëlle Fontaine, Serge Bourbigot","doi":"10.1177/07349041241248080","DOIUrl":"https://doi.org/10.1177/07349041241248080","url":null,"abstract":"This study applies the Morris method for a sensitivity analysis to evaluate the input parameters’ influence on the heat release rate in a pyrolysis model, focusing on two materials, poly(methyl methacrylate) (non-charring) and poly(vinyl chloride) (charring), examined under a cone calorimeter. A key aspect of our exploration was the role of input parameter variation intervals on the sensitivity outcomes. We analyzed three interval-setting methods:1. A standard ±10% deviation from the nominal value, commonly used in the literature.2. A range determined by the experimental uncertainties for individual parameters.3. A span from minimum to maximum values found in existing literature for each parameter.Our intensive literature review supported the framing of intervals for the latter two methods. Our findings underscore the critical role of the selected variation interval. Specifically, while a uniform ±10% variation identified activation energies as the primary influencers—consistent with prior literature—the introduction of experimental uncertainties shifted this prominence toward heats of reaction. Thus, the selected interval can drastically reshape the perceived importance of certain parameters. This original work challenges the traditionally employed variation ranges in sensitivity studies, emphasizing the need for a nuanced approach.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141167944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of repeated washings on thermal protective performances of one most used structural firefighting turnout gear in the Gauteng Province in South Africa 反复清洗对南非豪登省最常用的一种结构性消防战斗服热防护性能的影响
IF 1.9 4区 工程技术
Journal of Fire Sciences Pub Date : 2024-05-01 DOI: 10.1177/07349041241249635
Lucas M Kekana, Joseph KO Asante, Bonex Mwakikunga
{"title":"The effect of repeated washings on thermal protective performances of one most used structural firefighting turnout gear in the Gauteng Province in South Africa","authors":"Lucas M Kekana, Joseph KO Asante, Bonex Mwakikunga","doi":"10.1177/07349041241249635","DOIUrl":"https://doi.org/10.1177/07349041241249635","url":null,"abstract":"Fire performance measurements of one of the most used firefighting protective ensembles (also called turnout gears), in terms of thermal and smoke hazards, were determined with the cone calorimeter, that of thermal stability were determined with thermogravimetric analyzer, the physical inspection (physical degradation) of the surface done with the scanning electron microscopy, and energy dispersive spectroscopy measurements determined the elemental compositions of the detergent used in washing and the residual elements in the turnout gears. The cone calorimeter results indicated that the values of the thermal performance parameters, namely: peak heat release rate, maximum average rate of heat emission, and fire growth rate index, all decrease with increasing number of washing cycles, while the smoke parameters: peak smoke production rate, smoke growth rate index, total smoke release, and related sustained flaming values, all increase with increasing number of washing cycles. From the thermogravimetric analyzer measurements, the thermal stability of the turnout gears decrease with increasing number of washings.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140835621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Re-examination of the intumescence mechanism of ammonium polyphosphate/pentaerythritol/zeolite 4A fire-retarded formulation using advanced spectroscopic techniques 利用先进的光谱技术重新研究聚磷酸铵/季戊四醇/沸石 4A 阻燃配方的膨胀机理
IF 1.9 4区 工程技术
Journal of Fire Sciences Pub Date : 2024-04-26 DOI: 10.1177/07349041241245697
Matthieu Caron, Karima Ben Tayeb, Serge Bourbigot, Gaëlle Fontaine
{"title":"Re-examination of the intumescence mechanism of ammonium polyphosphate/pentaerythritol/zeolite 4A fire-retarded formulation using advanced spectroscopic techniques","authors":"Matthieu Caron, Karima Ben Tayeb, Serge Bourbigot, Gaëlle Fontaine","doi":"10.1177/07349041241245697","DOIUrl":"https://doi.org/10.1177/07349041241245697","url":null,"abstract":"The mixture of ammonium polyphosphate and pentaerythritol is a very efficient intumescent system suitable for polyolefins, especially polypropylene. In this article, the intumescence mechanism of this intumescent system with and without zeolite 4A used as a synergy agent is revisited. The intumescent system was investigated in depth using continuous-wave electron paramagnetic resonance spectroscopy, solid-state nuclear magnetic resonance, and the advanced technique, namely hyperfine sublevel correlation pulsed electron paramagnetic resonance. It was observed that the char generated between 250°C and 350°C is made of polycyclic heterocyclic radicals with nitrogen atoms and that free radicals are mainly generated at these temperatures with a spin concentration relatively stable at least up to 500°C. Moreover, the presence of hydrogen, carbon, nitrogen, and phosphorus was clearly evidenced in the chemical environment of free electrons at 350°C (hyperfine sublevel correlation pulsed electron paramagnetic resonance). Besides, it was also evidenced that 4A totally collapses below 250°C. Contrary to previous works suggesting the presence of aluminosilicophosphate complexes, this work demonstrated that distinct alumino- and silicophosphate complexes are generated and protected the residue at high temperatures.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140800477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fire dynamics simulator modeling of a line-of-duty death in a firefighting training facility using recent research on materials and firefighter safety 利用材料和消防员安全方面的最新研究成果,利用消防动态模拟器模拟消防培训设施中的殉职事件
IF 1.9 4区 工程技术
Journal of Fire Sciences Pub Date : 2024-04-25 DOI: 10.1177/07349041241237517
Jason Floyd, Daniel Madrzykowski
{"title":"Fire dynamics simulator modeling of a line-of-duty death in a firefighting training facility using recent research on materials and firefighter safety","authors":"Jason Floyd, Daniel Madrzykowski","doi":"10.1177/07349041241237517","DOIUrl":"https://doi.org/10.1177/07349041241237517","url":null,"abstract":"In 2005, a line-of-duty death of an instructor at a firefighter training facility spawned research into both firefighter training and improving firefighter protective gear. Since the incident, there has been additional research into the material properties, firefighter facepiece performance, and the classification of firefighter exposures. This has been in parallel to significant improvements in the ability to model fires and predict, rather than prescribe, fire growth. As this recent body of work was not available at the time of incident investigation, the incident was revisited using the current version of Fire Dynamics Simulator. The full day of training evolutions was modeled in Fire Dynamics Simulator using recent data on wood pyrolysis (the fuel) and facepiece reaction to heat. Fire Dynamics Simulator results were evaluated against the testing done following the incident. Facepiece research was used to develop hole formation criteria that could be evaluated from Fire Dynamics Simulator predictions of facepiece exposure. This was used to compare the performance of facepieces contemporary with the incident to today’s facepieces. In addition, exposure predictions were evaluated in the context of exposure hazard categories developed for firefighter protective gear.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140653919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信