John T Wade, Bhushan Lohar, Kari Lippert, Rob Cloutier, Sean Walker, Olabode Olanipekun
{"title":"A probabilistic analysis of non-military hangar fire protection systems","authors":"John T Wade, Bhushan Lohar, Kari Lippert, Rob Cloutier, Sean Walker, Olabode Olanipekun","doi":"10.1177/07349041241231206","DOIUrl":null,"url":null,"abstract":"The United States Air Force (USAF) dictates policy for foam fire suppression systems in their hangars. In November 2021, the USAF issued a Sundown Policy for Foam Fire Suppression Systems. The National Fire Protection Association’s Standard on Aircraft Hangars, NFPA 409 serves a similar function. This article uses a real-world installation and analysis of the hangar fire protection scheme stipulated in the USAF Sundown Policy as compared to an installation in compliance with NFPA 409. Applying the Poisson process for a zero-inflated probability distribution, the data referenced for the event tree were evaluated and thereafter validated. The analysis shows that the installation of hangar fire protection stipulated in the USAF Sundown Policy achieves a better performance for the fire protection system than an installation in compliance with NFPA 409, insofar as the risk analysis is concerned. Second, the installation of a fire protection system that complies with the requirements of NFPA 409 fails to achieve the basic probabilistic performance promulgated by the International Code Council’s Performance Code (ICCPC). The validation also demonstrated that the scenario involving the accidental discharge of fire foam was significantly more likely to occur compared to that involving only fire occurrences.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":"72 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fire Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/07349041241231206","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The United States Air Force (USAF) dictates policy for foam fire suppression systems in their hangars. In November 2021, the USAF issued a Sundown Policy for Foam Fire Suppression Systems. The National Fire Protection Association’s Standard on Aircraft Hangars, NFPA 409 serves a similar function. This article uses a real-world installation and analysis of the hangar fire protection scheme stipulated in the USAF Sundown Policy as compared to an installation in compliance with NFPA 409. Applying the Poisson process for a zero-inflated probability distribution, the data referenced for the event tree were evaluated and thereafter validated. The analysis shows that the installation of hangar fire protection stipulated in the USAF Sundown Policy achieves a better performance for the fire protection system than an installation in compliance with NFPA 409, insofar as the risk analysis is concerned. Second, the installation of a fire protection system that complies with the requirements of NFPA 409 fails to achieve the basic probabilistic performance promulgated by the International Code Council’s Performance Code (ICCPC). The validation also demonstrated that the scenario involving the accidental discharge of fire foam was significantly more likely to occur compared to that involving only fire occurrences.
期刊介绍:
The Journal of Fire Sciences is a leading journal for the reporting of significant fundamental and applied research that brings understanding of fire chemistry and fire physics to fire safety. Its content is aimed toward the prevention and mitigation of the adverse effects of fires involving combustible materials, as well as development of new tools to better address fire safety needs. The Journal of Fire Sciences covers experimental or theoretical studies of fire initiation and growth, flame retardant chemistry, fire physics relative to material behavior, fire containment, fire threat to people and the environment and fire safety engineering. This journal is a member of the Committee on Publication Ethics (COPE).