Re-examination of the intumescence mechanism of ammonium polyphosphate/pentaerythritol/zeolite 4A fire-retarded formulation using advanced spectroscopic techniques

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Matthieu Caron, Karima Ben Tayeb, Serge Bourbigot, Gaëlle Fontaine
{"title":"Re-examination of the intumescence mechanism of ammonium polyphosphate/pentaerythritol/zeolite 4A fire-retarded formulation using advanced spectroscopic techniques","authors":"Matthieu Caron, Karima Ben Tayeb, Serge Bourbigot, Gaëlle Fontaine","doi":"10.1177/07349041241245697","DOIUrl":null,"url":null,"abstract":"The mixture of ammonium polyphosphate and pentaerythritol is a very efficient intumescent system suitable for polyolefins, especially polypropylene. In this article, the intumescence mechanism of this intumescent system with and without zeolite 4A used as a synergy agent is revisited. The intumescent system was investigated in depth using continuous-wave electron paramagnetic resonance spectroscopy, solid-state nuclear magnetic resonance, and the advanced technique, namely hyperfine sublevel correlation pulsed electron paramagnetic resonance. It was observed that the char generated between 250°C and 350°C is made of polycyclic heterocyclic radicals with nitrogen atoms and that free radicals are mainly generated at these temperatures with a spin concentration relatively stable at least up to 500°C. Moreover, the presence of hydrogen, carbon, nitrogen, and phosphorus was clearly evidenced in the chemical environment of free electrons at 350°C (hyperfine sublevel correlation pulsed electron paramagnetic resonance). Besides, it was also evidenced that 4A totally collapses below 250°C. Contrary to previous works suggesting the presence of aluminosilicophosphate complexes, this work demonstrated that distinct alumino- and silicophosphate complexes are generated and protected the residue at high temperatures.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/07349041241245697","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The mixture of ammonium polyphosphate and pentaerythritol is a very efficient intumescent system suitable for polyolefins, especially polypropylene. In this article, the intumescence mechanism of this intumescent system with and without zeolite 4A used as a synergy agent is revisited. The intumescent system was investigated in depth using continuous-wave electron paramagnetic resonance spectroscopy, solid-state nuclear magnetic resonance, and the advanced technique, namely hyperfine sublevel correlation pulsed electron paramagnetic resonance. It was observed that the char generated between 250°C and 350°C is made of polycyclic heterocyclic radicals with nitrogen atoms and that free radicals are mainly generated at these temperatures with a spin concentration relatively stable at least up to 500°C. Moreover, the presence of hydrogen, carbon, nitrogen, and phosphorus was clearly evidenced in the chemical environment of free electrons at 350°C (hyperfine sublevel correlation pulsed electron paramagnetic resonance). Besides, it was also evidenced that 4A totally collapses below 250°C. Contrary to previous works suggesting the presence of aluminosilicophosphate complexes, this work demonstrated that distinct alumino- and silicophosphate complexes are generated and protected the residue at high temperatures.
利用先进的光谱技术重新研究聚磷酸铵/季戊四醇/沸石 4A 阻燃配方的膨胀机理
聚磷酸铵和季戊四醇的混合物是一种非常高效的膨胀体系,适用于聚烯烃,尤其是聚丙烯。本文重新探讨了这种膨胀体系的膨胀机理,包括使用沸石 4A 作为增效剂和不使用沸石 4A 作为增效剂。采用连续波电子顺磁共振波谱、固态核磁共振以及先进的超细子级相关脉冲电子顺磁共振技术对该膨胀体系进行了深入研究。研究发现,在 250°C 至 350°C 之间产生的炭是由含氮原子的多环杂环自由基组成的,自由基主要在这些温度下产生,其自旋浓度至少在 500°C 之前相对稳定。此外,350°C 时自由电子的化学环境中明显存在氢、碳、氮和磷(超细子级相关脉冲电子顺磁共振)。此外,还证明 4A 在 250°C 以下完全塌缩。与之前认为存在铝硅磷酸盐复合物的研究相反,这项研究表明,在高温下会产生不同的铝磷酸盐和硅磷酸盐复合物,并保护残留物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信