Viktor Polyakov, Samuel Beal, Stephen Mercer Meding, Katerina Dontsova
{"title":"Effect of gypsum on transport of IMX-104 constituents in overland flow under simulated rainfall.","authors":"Viktor Polyakov, Samuel Beal, Stephen Mercer Meding, Katerina Dontsova","doi":"10.1002/jeq2.20652","DOIUrl":"https://doi.org/10.1002/jeq2.20652","url":null,"abstract":"<p><p>Residue of energetic formulations, which is deposited on military training grounds following incomplete detonation, poses biotic hazards. This residue can be transported off-site, adsorb to soil clays and organic matter, transform or degrade, or taken up by plants and animals. Its harmful effects can be mitigated by localizing the energetics at the site of initial deposition using soil amendments and allowing them to bio- and photodegrade in situ. Small plots with coarse loamy soil were used to study the effect of gypsum (CaSO<sub>4</sub>·2H<sub>2</sub>O) on transport and redistribution under simulated rainfall of various sizes of insensitive munition explosive (IMX)-104 particles, which consist of 3-nitro-1,2,4-triazol-5-one (NTO), 2,4-dinitroanisole (DNAN), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tertranitro-1,3,5,7-tetrazocine (HMX). The addition of gypsum more than doubled infiltration and decreased sediment loss by 16% compared to the control. The post-rainfall mass balance of IMX-104 in the order from greater to smaller pools was as follows: (1) soil surface retention, (2) off-site loss to overland flow, and (3) sub-surface infiltration. Overall, the application of gypsum significantly decreased concentration and the total mass loss of dissolved DNAN, RDX, and HMX in surface runoff. In addition, gypsum significantly decreased (for NTO, DNAN, and HMX) or delayed (for NTO, DNAN, RDX, and HMX) the peak discharge of <2 mm particulate energetics. The infiltration of NTO in the gypsum treatment was fivefold greater than in the control. Moreover, DNAN and RDX were also present in infiltration, while in the gypsum-free control none were found. Gypsum shifted the total mass balance of energetics toward subsurface flow. This study indicates that gypsum may decrease off-site transport of energetic constituents in the soils that are subject to surface sealing.</p>","PeriodicalId":15732,"journal":{"name":"Journal of environmental quality","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David R Huggins, Claire L Phillips, Bryan R Carlson, Joaquin J Casanova, Garett C Heineck, Alycia R Bean, Erin S Brooks
{"title":"The LTAR Cropland Common Experiment at R. J. Cook Agronomy Farm.","authors":"David R Huggins, Claire L Phillips, Bryan R Carlson, Joaquin J Casanova, Garett C Heineck, Alycia R Bean, Erin S Brooks","doi":"10.1002/jeq2.20647","DOIUrl":"10.1002/jeq2.20647","url":null,"abstract":"<p><p>Dryland agriculture in the Inland Pacific Northwest is challenged in part by rising input costs for seed, fertilizer, and agrichemicals; threats to water quality and soil health, including soil erosion, organic matter decline, acidification, compaction, and nutrient imbalances; lack of cropping system diversity; herbicide resistance; and air quality concerns from atmospheric emissions of particulate matter and greenhouse gases. Technological advances such as rapid data acquisition, artificial intelligence, cloud computing, and robotics have helped fuel innovation and discovery but have also further complicated agricultural decision-making and research. Meeting these challenges has promoted interest in (1) supporting long-term research that enables assessment of ecosystem service trade-offs and advances sustainable and regenerative approaches to agriculture, and (2) developing coproduction research approaches that actively engage decision-makers and accelerate innovation. The R. J. Cook Agronomy Farm (CAF) Long-Term Agroecosystem Research (LTAR) site established a cropping systems experiment in 2017 that contrasts prevailing (PRV) and alternative (ALT) practices at field scales over a proposed 30-year time frame. The experimental site is on the Washington State University CAF near Pullman, WA. Cropping practices include a wheat-based cropping system with wheat (Triticum aestivum L.), canola (Brassica napus, variety napus), chickpea (Cicer arietinum), and winter pea (Pisum sativum), with winter wheat produced every third year under the ALT practices of continuous no-tillage and precision applied N, compared to the PRV practice of reduced tillage (RT) and uniformly applied agrichemicals. Biophysical measurements are made at georeferenced locations that capture field-scale spatial variability at temporal intervals that follow approved methods for each agronomic and environmental metric. Research to date is assessing spatial and temporal variations in cropping system performance (e.g., crop yield, soil health, and water and air quality) for ALT versus PRV and associated tradeoffs. Future research will explore a coproduction approach with the intent of advancing discovery, innovation, and impact through collaborative stakeholder-researcher partnerships that direct and implement research priorities.</p>","PeriodicalId":15732,"journal":{"name":"Journal of environmental quality","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}