Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering最新文献

筛选
英文 中文
Effect of temperature on the dissolution of the lead (II) carbonate hydrocerussite for varying pH and dissolved inorganic carbon conditions. 不同 pH 值和溶解无机碳条件下温度对碳酸铅(II)氢cerussite 溶解的影响。
IF 2.1 4区 环境科学与生态学
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering Pub Date : 2024-01-01 Epub Date: 2024-04-24 DOI: 10.1080/10934529.2024.2340388
C S E Kushnir, C E Robinson
{"title":"Effect of temperature on the dissolution of the lead (II) carbonate hydrocerussite for varying pH and dissolved inorganic carbon conditions.","authors":"C S E Kushnir, C E Robinson","doi":"10.1080/10934529.2024.2340388","DOIUrl":"10.1080/10934529.2024.2340388","url":null,"abstract":"<p><p>The effect of temperature on the solubility of lead-bearing solid phases in water distribution systems for different water chemistry conditions remains unclear although lead concentrations are known to vary seasonally. The study objective is to explore the effect of temperature on the solubility of the lead(II) carbonate hydrocerussite under varying pH and DIC conditions. This is achieved through batch dissolution experiments conducted at multiple pHs (6-10) and DIC concentrations (20-200 mg CL<sup>-1</sup>) at temperatures ranging from 5 to 40 °C. A thermodynamic model was also applied to evaluate the model's ability to predict temperature effects on lead(II) carbonate solubility including solid phase transformations. In general, increasing temperature increased total dissolved lead at high pHs and the effect of temperature was greater for high DIC conditions, particularly for pH > 8. Temperature also influenced the pH at which the dominant lead(II) solid phase switched from hydrocerussite to cerussite (occurred between pH 7.25 to 10). Finally, the model was able to capture the overall trends observed despite thermodynamic data limitations. While this study focuses on a simple lead solid-aqueous system, findings provide important insights regarding the way in which temperature and water chemistry interact to affect lead concentrations.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"155-171"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140856447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PM2.5 induce neurotoxicity via iron overload and redox imbalance mediated-ferroptosis in HT22 cells. PM2.5 在 HT22 细胞中通过铁超载和氧化还原失衡介导的铁变态反应诱导神经毒性。
IF 2.1 4区 环境科学与生态学
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering Pub Date : 2024-01-01 Epub Date: 2024-03-26 DOI: 10.1080/10934529.2024.2331938
Shuhui Liu, Aiqing Wang, Danhong Zhou, Xuedi Zhai, Ling Ding, Liang Tian, Yidan Zhang, Jianshu Wang, Lili Xin
{"title":"PM<sub>2.5</sub> induce neurotoxicity via iron overload and redox imbalance mediated-ferroptosis in HT22 cells.","authors":"Shuhui Liu, Aiqing Wang, Danhong Zhou, Xuedi Zhai, Ling Ding, Liang Tian, Yidan Zhang, Jianshu Wang, Lili Xin","doi":"10.1080/10934529.2024.2331938","DOIUrl":"10.1080/10934529.2024.2331938","url":null,"abstract":"<p><p>PM<sub>2.5</sub> is an important risk factor for the development and progression of cognitive impairment-related diseases. Ferroptosis, a new form of cell death driven by iron overload and lipid peroxidation, is proposed to have significant implications. To verify the possible role of ferroptosis in PM<sub>2.5</sub>-induced neurotoxicity, we investigated the cytotoxicity, intracellular iron content, iron metabolism-related genes, oxidative stress indices and indicators involving in Nrf2 and ferroptosis signaling pathways. Neurotoxicity biomarkers as well as the ferroptotic cell morphological changes were determined by Western Blot and TEM analysis. Our results revealed that PM<sub>2.5</sub> induced cytotoxicity, lipid peroxidation, as indicated by MDA content, and neurotoxicity <i>via</i> Aβ deposition in a dose-related manner. Decreased cell viability and excessive iron accumulation in HT-22 cells can be partially blocked by ferroptosis inhibitors. Interestingly, GPX activity, Nrf2, and its regulated ferroptotic-related proteins (i.e. GPX4 and HO-1) were significantly up-regulated by PM<sub>2.5</sub>. Moreover, gene expression of <i>DMT1</i>, <i>TfR1</i>, <i>IRP2</i> and <i>FPN1</i> involved in iron homeostasis and NCOA4-dependent ferritinophagy were activated after PM<sub>2.5</sub> exposure. The results demonstrated that PM<sub>2.5</sub> triggered ferritinophagy-dependent ferroptotic cell death due to iron overload and redox imbalance. Activation of Nrf2 signaling pathways may confer a protective mechanism for PM<sub>2.5</sub>-induced oxidative stress and ferroptosis.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"55-63"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140293697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of FeCl3 concentration in chemically enhanced primary treatment on the performance of a conventional wastewater treatment plant. A case study. 化学强化一级处理中氯化铁浓度对传统污水处理厂性能的影响。案例研究。
IF 2.1 4区 环境科学与生态学
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering Pub Date : 2024-01-01 Epub Date: 2024-03-12 DOI: 10.1080/10934529.2024.2328449
L M Ruiz, A Checa, J I Perez, J M Torre-Marín, A Muñoz-Ubiña, M A Gómez
{"title":"Effect of FeCl<sub>3</sub> concentration in chemically enhanced primary treatment on the performance of a conventional wastewater treatment plant. A case study.","authors":"L M Ruiz, A Checa, J I Perez, J M Torre-Marín, A Muñoz-Ubiña, M A Gómez","doi":"10.1080/10934529.2024.2328449","DOIUrl":"10.1080/10934529.2024.2328449","url":null,"abstract":"<p><p>The effect of coagulant dosage in a chemically enhanced primary treatment (CEPT) on the performance of a conventional wastewater treatment plant (WWTP) has been investigated. Lab-scale experiments simulations were carried out in order to evaluate the effect of coagulant addition on the primary settling performance. In these experiments, FeCl<sub>3</sub> was used as coagulant. Later, the WWTP was theoretically simulated using a commercial software (WEST®) to evaluate the effect of coagulation/flocculation on the global system, based on the results obtained at lab-scale. According to these results, the CEPT modifies the organic matter balance in the WWTP, decreasing the contribution of readily (S<sub>S</sub>) and slowly (X<sub>S</sub>) biodegradable fractions of COD to the aerobic biological process up to 27.3% and 80.8%, respectively, for a dosage of FeCl<sub>3</sub> of 24 mg L<sup>-1</sup>. Consequently, total suspended solids in the aerobic reactor and the secondary purged sludge decreased up to 33% and 13%, respectively. However, the influence on effluent quality was negligible. On the contrary, suspended solids concentration in the sludge to be treated by anaerobic digestion increased, mainly regarding the S<sub>s</sub> and X<sub>s</sub> fractions, which caused an 8.1% increase in biogas production potential, with approximately 60% of CH<sub>4</sub> concentration.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"33-39"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140110431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of heavy metals and human health risk associated with the consumption of crops cultivated in industrial areas of Maputo, Mozambique. 评估与食用莫桑比克马普托工业区种植的农作物有关的重金属和人类健康风险。
IF 2.1 4区 环境科学与生态学
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering Pub Date : 2024-01-01 Epub Date: 2024-05-11 DOI: 10.1080/10934529.2024.2349478
Mário Machunguene, Sónia V Guilundo, Rui S Oliveira, Célia M Martins, Orlando A Quilambo
{"title":"Assessment of heavy metals and human health risk associated with the consumption of crops cultivated in industrial areas of Maputo, Mozambique.","authors":"Mário Machunguene, Sónia V Guilundo, Rui S Oliveira, Célia M Martins, Orlando A Quilambo","doi":"10.1080/10934529.2024.2349478","DOIUrl":"10.1080/10934529.2024.2349478","url":null,"abstract":"<p><p>This study aimed to evaluate heavy metals concentrations in soils and vegetables (cabbage, lettuce, and cassava) cultivated at Matola and Beluluane Industrial Parks, and to assess health risks linked to their consumption through estimated daily intake, hazard index (HI), and incremental lifetime cancer risk. Concentrations of Al, As, Co, Cd, Cr, Ni, Pb, and Zn were determined in the two sites. Soil concentrations of As at Beluluane site and As, Cd, and Cr at Matola site exceeded reference limits of the Food and Agriculture Organization/World Health Organization, showing heavy metal contamination. At Beluluane site, all studied vegetables presented As and Pb levels higher than reference limits, Cd concentrations were higher than the reference limit in cabbage, lettuce, and cassava leaves. At Matola site crops concentrations of As, Cd, Cr, and Pb exceeded the reference limits. Zinc exceeded the reference limit in all crops except in cabbage. HIs for vegetables from Beluluane exceeded 1.0 in cabbage (2.66), lettuce (2.27), and cassava leaves (2.37). Likewise, at Matola, HIs exceeded 1.0 in lettuce (1.67), cassava leaves (1.65), and root tubers (13). We found that vegetables cultivated in industrial parks present high carcinogenic risk due to heavy metal contamination, rendering them unsuitable for human consumption.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"200-211"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140908769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling of the biomethane production from ultrasonic pretreated fruit and vegetable waste via anaerobic digestion. 超声波预处理果蔬垃圾厌氧消化产生生物甲烷的模型。
IF 1.9 4区 环境科学与生态学
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering Pub Date : 2024-01-01 Epub Date: 2024-12-13 DOI: 10.1080/10934529.2024.2431399
Kgomotso Matobole, Tumisang Seodigeng, Musamba Banza, Hilary Rutto
{"title":"Modeling of the biomethane production from ultrasonic pretreated fruit and vegetable waste <i>via</i> anaerobic digestion.","authors":"Kgomotso Matobole, Tumisang Seodigeng, Musamba Banza, Hilary Rutto","doi":"10.1080/10934529.2024.2431399","DOIUrl":"10.1080/10934529.2024.2431399","url":null,"abstract":"<p><p>The global dependency on the depleted fossil fuels has led to the quest for acquiring alternative energy sources. Different types of waste material are generated at a high rate and tapping into their use for greener, alternative energy production is an option. The mesophilic anaerobic co-digestion of fruit and vegetable waste and wastewater treatment plant sewage sludge experiments were conducted using ultrasonic pretreated substrates. Sonication exposure times from 0 to 45 min were selected for the experiments. An automatic methane potential test system (BMP) was used to determine the production rate of biomethane of the fruit and vegetables waste containing 60% fruit and 40% vegetables. The highest cumulative methane production of 238 mL g<sup>-1</sup> VS was achieved at sonication time exposure of 45 min. It was observed that an increase in ultrasonic sonication exposure time, improved methane yield. The resulting experimental data was fitted with the modified Gompertz, co-digestion modified Gompertz, original Richards, modified Richards and co-digestion modified Richards models. IBM SPSS Statistics software was used for curve fitting and the estimation of the models' kinetic parameters. The modified Gompertz and Richards models showed higher goodness fit, both with <i>R</i><sup>2</sup> of 0.93 and modified Richards models did not produce a good fit for the data, with <i>R</i><sup>2</sup> of 0.7. The developed co-digestion models considered a combination of substrates that were easily digested as well as complex substrates that required multiple steps of digestion. The results show that the co-digestion modified Gompertz model had a goodness of fit of 0.98. Co-digestion modified Richard's model perfectly fit the experimental data, with <i>R</i><sup>2</sup> of 1. Both the co-digestion modified models are recommended due to their fitting performance. Fruit and vegetable waste comprise multiple substrates including simple sugars that digest readily and much more complex cellulose substrates that require more steps to digest and requiring the second step of digestion after undergoing hydrolysis. Both models took that into account. The aim of this study was to evaluate the suitability of the Gompertz and Richards model in the co-digestion of fruit and vegetables waste with sludge, as well as to develop co-digestion models for the substrates at hand.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"513-522"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142822277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and characterization of β-cyclodextrin capped magnetic nanoparticles anchored on cellulosic matrix for removal of cr(VI) from mimicked wastewater: Adsorption and kinetic studies. 锚定在纤维素基质上的β-环糊精封端磁性纳米粒子的制备与表征,用于去除模拟废水中的六(Cr):吸附和动力学研究。
IF 1.9 4区 环境科学与生态学
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering Pub Date : 2024-01-01 Epub Date: 2024-11-07 DOI: 10.1080/10934529.2024.2424084
Lynda S Mesoppirr, Evans K Suter, Wesley N Omwoyo, Nathan M Oyaro, Simphiwe M Nelana
{"title":"Preparation and characterization of β-cyclodextrin capped magnetic nanoparticles anchored on cellulosic matrix for removal of cr(VI) from mimicked wastewater: Adsorption and kinetic studies.","authors":"Lynda S Mesoppirr, Evans K Suter, Wesley N Omwoyo, Nathan M Oyaro, Simphiwe M Nelana","doi":"10.1080/10934529.2024.2424084","DOIUrl":"10.1080/10934529.2024.2424084","url":null,"abstract":"<p><p>Hexavalent Chromium (Cr(VI)) is essential in many industrial processes. However, it finds its way into water bodies, posing health problems, including lung cancer and the inhibition of DNA and RNA in biological systems. Several chemical and traditional water purification methods have been developed in the past, but most are expensive, tedious and ineffective. This study aimed to prepare and characterize a low-cost hybrid adsorbent, β-Cyclodextrin capped magnetic nanoparticles anchored on a cellulosic matrix (CNC-Fe<sub>3</sub>O<sub>4</sub>NP-CD). The characterization techniques confirmed the integration of CNCs, Fe<sub>3</sub>O<sub>4</sub>NP and CD into the prepared CNC-Fe<sub>3</sub>O<sub>4</sub>NP-CD nanocomposite adsorbent. The adsorbent was employed in batch adsorption experiments by varying adsorption parameters, including solution pH, adsorbent dosage, initial Cr(VI) concentration, and contact time. From the findings, the nanocomposite adsorbent achieved a maximum Cr(VI) removal efficiency of 97.45%, while the pseudo-second-order kinetic model best fitted the experimental data with high linear regression coefficients (R<sup>2</sup> > 0.98). The Elovich model indicated that the adsorption process was driven by chemisorption on heterogeneous surface sites, with initial sorption rates surpassing desorption rates. These findings established that CNC-Fe<sub>3</sub>O<sub>4</sub>NP-CD presents high efficiency for Cr(VI) removal under acidic pH, offering the potential for optimization and application in real-world wastewater treatment.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"472-487"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Behavioral and biochemical effects of environmental concentrations of caffeine in zebrafish after long-term exposure. 长期接触环境浓度咖啡因对斑马鱼行为和生化的影响。
IF 1.9 4区 环境科学与生态学
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering Pub Date : 2024-01-01 Epub Date: 2024-10-29 DOI: 10.1080/10934529.2024.2420482
Niedja Santos, Victor Picolo, Inês Domingues, Diego Sousa-Moura, Cesar Koppe Grisolia, Miguel Oliveira
{"title":"Behavioral and biochemical effects of environmental concentrations of caffeine in zebrafish after long-term exposure.","authors":"Niedja Santos, Victor Picolo, Inês Domingues, Diego Sousa-Moura, Cesar Koppe Grisolia, Miguel Oliveira","doi":"10.1080/10934529.2024.2420482","DOIUrl":"10.1080/10934529.2024.2420482","url":null,"abstract":"<p><p>Caffeine (CAF) is widely detected in aquatic environments, serving as an indicator of anthropogenic contamination. Its high consumption, and persistence raise environmental concerns. This study was to evaluate the chronic effects in terms of growth rate, weight, behavior, and biochemical parameters of environmental concentrations of CAF on adult zebrafish. Adult zebrafish were exposed, for 30 d, to 0, 0.5, 1.5, and 300 µg L<sup>-1</sup> CAF, with behavior (feeding latency, exploration, aggression, sociability, sound response) and biochemical endpoints (acetylcholinesterase (AChE), lactate dehydrogenase (LDH), and cortisol levels) assessed at the end of the exposure. CAF 0.5 µg L<sup>-1</sup> increased feeding latency time, while 300 µg L<sup>-1</sup> reduced growth and weight. Exposure to CAF affect fish behavior in terms of vertical exploration, aggressiveness, shoaling, and sound responses although were concentration specific. All concentrations tested increased social behavior, with fish swimming closer to the shoal. At a biochemical level, CAF exposed showed reduced AChE activity, while LDH activity, and cortisol levels increased at 300 µg L<sup>-1</sup>. Low concentrations of CAF caused neurotoxicity in zebrafish which may compromise their feeding behavior, and social interactions in the wild. These changes suggest potential ecological impacts of chronic exposure to CAF, such as impaired feeding and stress responses.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"453-465"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synchronously degradation of biogas slurry and decarbonization of biogas using microbial fuel cells. 利用微生物燃料电池同步降解沼液和脱碳沼气。
IF 1.9 4区 环境科学与生态学
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering Pub Date : 2024-01-01 Epub Date: 2025-01-29 DOI: 10.1080/10934529.2025.2455300
Zhen Liu, Kai Gu, Kai Du, Jia Guo, Lei Gong, Mingjing Li, Jun Zhou
{"title":"Synchronously degradation of biogas slurry and decarbonization of biogas using microbial fuel cells.","authors":"Zhen Liu, Kai Gu, Kai Du, Jia Guo, Lei Gong, Mingjing Li, Jun Zhou","doi":"10.1080/10934529.2025.2455300","DOIUrl":"10.1080/10934529.2025.2455300","url":null,"abstract":"<p><p>Two-chamber microbial fuel cell (MFC) with biogas slurry (BS) of corn stover as the anode substrate and <i>Chlorella</i> as the cathode substrate was investigated to solve the problem of the accumulation of wastewater generated from biogas plants and to achieve low-cost separation of CO<sub>2</sub> from biogas. A simple two-compartment MFC was constructed using biocatalysis and inexpensive materials without expensive catalysts. The performance of MFC (X1-W, Y1-W, Z1-W) with different biogas solution concentrations as anode substrate and MFC (X2-C, Y2-C, Z2-C) with <i>Chlorella</i> as biocathode were compared, respectively. The MFCs (Z1-W,) can start quickly and maintain a stable power production (286.82 mV ± 184.59 mV). The growth rate of <i>Chlorella</i> at the MFCs (X2-C, Y2-C, Z2-C) biocathode was highly coincident with the output voltage. The MFC (Z2-C) has a maximum power density of 489.7 mW/m<sup>2</sup> when the external resistance is varied to 200 Ω. The removal rates of chemical oxygen demand (COD) and ammonia nitrogen (NH<sub>3</sub>-N) are 93.42% and 92.59%. The maximum cell growth (X<sub>max</sub>) of <i>Chlorella</i> was 125.61 mg d<sup>-1</sup>, biomass productivity (P<sub>max</sub>) was 95.60 g L<sup>-1</sup> d<sup>-1</sup> and the maximum CO<sub>2</sub> biofixation rate (R<sub>CO2</sub>) was 175.26 mg L<sup>-1</sup> d<sup>-1</sup>. The microbial community analysis showed that the microorganisms in the anode solution were mainly from the biogas slurry and belonged to the hydrolytic bacteria. At the same time, the electroactive microbial community was mainly from anaerobic sludge. Therefore, MFCs can effectively degrade the organic matter in the biogas solution and generate electricity, and use <i>Chlorella</i> to absorb CO<sub>2</sub> from the biogas, providing a new method for the development of biogas industry.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"593-605"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143066076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of machine learning for environmentally friendly advancement: exploring biomass-derived materials in wastewater treatment and agricultural sector - a review. 机器学习在环境友好发展中的应用:探索生物质衍生材料在废水处理和农业部门的应用综述。
IF 1.9 4区 环境科学与生态学
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering Pub Date : 2024-01-01 Epub Date: 2025-02-02 DOI: 10.1080/10934529.2025.2458979
Banza M Jean Claude, Linda L Sibali
{"title":"Application of machine learning for environmentally friendly advancement: exploring biomass-derived materials in wastewater treatment and agricultural sector - a review.","authors":"Banza M Jean Claude, Linda L Sibali","doi":"10.1080/10934529.2025.2458979","DOIUrl":"10.1080/10934529.2025.2458979","url":null,"abstract":"<p><p>There are several uses for biomass-derived materials (BDMs) in the irrigation and farming industries. To solve problems with material, process, and supply chain design, BDM systems have started to use machine learning (ML), a new technique approach. This study examined articles published since 2015 to understand better the current status, future possibilities, and capabilities of ML in supporting environmentally friendly development and BDM applications. Previous ML applications were classified into three categories according to their objectives: material and process design, performance prediction and sustainability evaluation. ML helps optimize BDMs systems, predict material properties and performance, reverse engineering, and solve data difficulties in sustainability evaluations. Ensemble models and cutting-edge Neural Networks operate satisfactorily on these datasets and are easily generalized. Ensemble and neural network models have poor interpretability, and there have not been any studies in sustainability assessment that consider geo-temporal dynamics; thus, building ML methods for BDM systems is currently not practical. Future ML research for BDM systems should follow a workflow. Investigating the potential uses of ML in BDM system optimization, evaluation and sustainable development requires further investigation.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"606-621"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143074642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Concentration of selected biogenic and risk elements in liver, kidneys and muscle of domestic rabbit and wild brown hare. 家兔和野生棕兔肝脏、肾脏和肌肉中某些生物元素和风险元素的浓度。
IF 1.9 4区 环境科学与生态学
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering Pub Date : 2024-01-01 Epub Date: 2024-08-28 DOI: 10.1080/10934529.2024.2395714
Marcela Capcarova, Beata Dudejova, Lubos Harangozo, Anton Kovacik, Christina Emmanouil, Jirina Zemanova, Maria-Jose Argente, Robert Stawarz, Zita Vasakova Filipejova, Klaudia Jaszcza, Peter Massanyi
{"title":"Concentration of selected biogenic and risk elements in liver, kidneys and muscle of domestic rabbit and wild brown hare.","authors":"Marcela Capcarova, Beata Dudejova, Lubos Harangozo, Anton Kovacik, Christina Emmanouil, Jirina Zemanova, Maria-Jose Argente, Robert Stawarz, Zita Vasakova Filipejova, Klaudia Jaszcza, Peter Massanyi","doi":"10.1080/10934529.2024.2395714","DOIUrl":"10.1080/10934529.2024.2395714","url":null,"abstract":"<p><p>In the present study the concentration of selected elements in tissues of domestic rabbits and of wild brown-hares (kidneys, liver, and muscle - <i>m. quadriceps femoris</i>) in Slovakian habitats were determined. After mineralization the elements examined were detected using flame atomic absorption spectrophotometry/graphite furnace atomic absorption spectrophotometry. For rabbits, Fe in the liver was correlated with essential (Mn, Cu) (<i>R</i><sup>2</sup> = 0.94, <i>p</i> < 0.05; <i>R</i><sup>2</sup> = 0.96, <i>p</i> < 0.05 respectively) or toxic (Pb) elements (<i>R</i><sup>2</sup> = -0.93, <i>p</i> < 0.05). For hares, significant correlations were found between Cd and Cu or between Cd and Mn in the kidneys (<i>R</i><sup>2</sup> = -0.96, <i>p</i> < 0.05; <i>R</i><sup>2</sup> = 0.92, <i>p</i> < 0.05 respectively), which is the target organ for Cd. Higher concentrations of the elements were found in hare tissue, and this may be linked to pollution of their wild habitats. The xenobiotic elements as well as the essential elements were accumulated in the kidneys of the hares than rabbits. For liver, differences were less pronounced and significance was only for Fe and Cu. Muscle of hares was more contaminated than of rabbits for both biogenic and toxic elements. These results show that detectable concentrations of inorganic elements. These levels may be linked to contamination of the natural habitats of wild biota due to industry, traffic, agriculture, and urban sprawl.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"334-341"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信