{"title":"Investigation of the usability of activated carbon as a filling material in nitrile butadiene rubber/natural rubber components and modeling by regression analysis","authors":"Şaban Bülbül, Halime Ergün","doi":"10.1177/00952443231215469","DOIUrl":"https://doi.org/10.1177/00952443231215469","url":null,"abstract":"Activated carbon is a versatile material with a wide range of applications due to its porous structure and large surface area. In this study, activated carbon was manufactured from cellulose using zinc chloride and phosphoric acid activation agents, and it was characterized using Brunauer-Emmett-Teller (BET), Field-Emission Scanning Electron Microscopes (FE-SEM), Energy Distribution Spectroscopy (EDS), mapping, and Fourier Transform Infrared Spectrophotometer (FTIR). Two different types of activated carbon utilized as a filler in Nitrile Butadiene Rubber (NBR)/Natural Rubber (NR) blends at different proportions (%0, %5, %10, %15 and 20%), and compared its properties to those of carbon black. The results showed that the addition of activated carbon improved the mechanical properties of the rubber blends, including hardness, tensile strength, and unit elongation. Furthermore, the experimental data obtained were used to examine the effects of carbon black, activated carbon salt, and activated carbon acid values on density, hardness, tensile strength, and percentage elongation variables using Multiple Linear Regressions (MLR). These models provided successful results in predicting the data with fewer experiments. The results have the potential to contribute to the promotion of the use of environmentally friendly materials in future research and to be an important step towards a sustainable industry.","PeriodicalId":15644,"journal":{"name":"Journal of Elastomers and Plastics","volume":" 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135285868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Farzane Tabatabaee, Saeed Hanifi, Mohammad Tavakkol
{"title":"Glycerol-treated polypropylene/carbon black nanocomposites: Analysis of electrical, rheological, thermal and mechanical properties","authors":"Farzane Tabatabaee, Saeed Hanifi, Mohammad Tavakkol","doi":"10.1177/00952443231215471","DOIUrl":"https://doi.org/10.1177/00952443231215471","url":null,"abstract":"Electrically conductive nanocomposites based on polypropylene (PP) were prepared using carbon black (CB) nanoparticles via melt blending in the presence of glycerol and castor oil as hydroxyl functional dispersing aids and maleic anhydride–grafted polypropylene (MAgPP) as a compatibilizer. Initially, electrical conductivity of PP/CB nanocomposites with different dosages of both CB nanoparticles and dispersing aids were investigated through electrical analysis. Results indicated that castor oil had no beneficial effects on electrical conductivity. However, the efficiency of 3 wt% loading of glycerol was verified through measurements of electrical, rheological, thermal and mechanical properties as well as by morphological studies. The volume electrical conductivity value of PP nanocomposites containing 12 wt% CB significantly enhanced to 1.2 × 10 −4 S/cm by adding 3 wt% glycerol in compared with nanocomposite without glycerol with the volume conductivity value of 1.8 × 10 −6 S/cm. Incorporation of optimum amount of glycerol favoured the dispersion of nanofiller in the matrix which was confirmed by scanning electron microscopy observations, leading to higher conductivity due to better formation of conductive pathways within the matrix. Additionally, at the same concentration of CB nanofiller, samples treated with 3 wt% glycerol showed higher melting temperatures, storage modulus ( Gˊ), complex viscosity, tensile modulus and elongation at break. These findings indicate that adding an optimum amount of an efficient hydroxyl functional component like glycerol into PP/CB nanocomposite can be a promising way to enhance the electrically conductive performance while other properties could be maintained well or even improved.","PeriodicalId":15644,"journal":{"name":"Journal of Elastomers and Plastics","volume":" 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135285713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuxin Liu, Liangyan Liao, Zesheng Liang, Rulong Wu, Fang Yang
{"title":"Tensile creep behavior and structures of sisal fiber reinforced styrene butadiene thermoplastic elastomer/polystyrene composites","authors":"Yuxin Liu, Liangyan Liao, Zesheng Liang, Rulong Wu, Fang Yang","doi":"10.1177/00952443231212553","DOIUrl":"https://doi.org/10.1177/00952443231212553","url":null,"abstract":"Styrene butadiene thermoplastic elastomer (SBS)/polystyrene (PS)/sisal fiber (SF) composites were prepared by melt-blending method. The tensile creep behavior of SBS/PS/SF composites was studied and fitted by four viscoelastic models including Findley, Burger, generalized Kelvin-Voigt and Maxwell models. The effects of content and surface properties of SF treated by alkali and silane coupling agent on the creep behavior, structures and thermal properties of the composites under the action of tensile stress were investigated. The results indicated that the generalized Kelvin-Voigt model and generalized Maxwell model could best fit the tensile creep behavior of SBS/PS/SF composites. The creep resistance and thermal stability of the composites improved with the increases of SF content and tensile stress. The interfacial properties of fiber and matrix were enhanced after SF treated by silane, which would be beneficial to the improvements of the creep resistance and thermal stability. The glass transition temperature of the composite increased with the increase of SF content, but decreased after the action of the tensile stress.","PeriodicalId":15644,"journal":{"name":"Journal of Elastomers and Plastics","volume":"43 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136103419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Use of vegetable oils as an alternate to naphthenic oil for extension of emulsion styrene butadiene rubber","authors":"Shambhu Lal Agrawal, Pankaj Kumawat, Rajnikant Salvi, Jayveersinh Jhala, Jayesh Bhatt, Suresh C Ameta","doi":"10.1177/00952443231209478","DOIUrl":"https://doi.org/10.1177/00952443231209478","url":null,"abstract":"Various petroleum based mineral oils like Distillate Aromatic Extract (DAE), Treated Distillate Aromatic Extract (TDAE), Residual Aromatic Extract (RAE) and Naphthenic oils are used for extension of emulsion polymerized Styrene Butadiene Rubber (E-SBR). Vegetable oils are alternate to these petroleum oil from sustainability point of view as vegetable oils have no Polycyclic Aromatic (PCA) content. They improve abrasion resistance leads to less rubber particulates spread in the environment and reduce rolling resistance leads to lower fuel consumption. However, introduction of few vegetable oils leads to slow down the cure reaction due to high unsaturation to saturation ratio. Presence of high fatty acid content in vegetable oils help in better rubber-filler interaction. In the present research, vegetable origin oils as such without any modification (Decas, Palmolein, Groundnut, Soybean, Mustard and Coconut) extended Styrene Butadiene Rubber (OE-SBR) were characterized in standard American Society for Testing and Materials (ASTM) compound recipe for various processing, different vulcanizate and other performance properties. Curative’s dosages were adjusted in the recipe of vegetable oil extended SBR’s to achieve the 300% modulus value like naphthenic oil. Vegetable oil extended Emulsion Styrene Butadiene Rubber (E-SBR) grades (Prepared with Palmolein and Coconut oils) were showing comparable rheometric and stress-strain properties, high reinforcement index (around 5%), better rubber-filler interaction parameter (around 12%), better abrasion resistance (around 23%) and comparable tanδ value @0°, 30° and 60°C as compared to naphthenic oil extended SBR based compound.","PeriodicalId":15644,"journal":{"name":"Journal of Elastomers and Plastics","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135618323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on modified VAc-VeoVa10 latex prepared by soap-free emulsion polymerization","authors":"Zheqing Gong, Lijun Chen","doi":"10.1177/00952443231207969","DOIUrl":"https://doi.org/10.1177/00952443231207969","url":null,"abstract":"Modified latex is prepared via the soap-free emulsion polymerization of ethyl acetate (VAc) and vinyl versatate (VeoVa10). DFHMA is used as modified monomers. The composite surfactants of SR-10 and ANPEO-10 are used as the composite emulsifiers. The polymerization is initiated by potassium sulfate (KPS). The structure of latex film was characterized by Fourier transform infrared spectroscopy (FTIR). The latex films were tested by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and contact angle (CA) determinator. The particle size of the latex emulsion particle size is determined by the Zetatrac dynamic light scatter. Results show that the optimum condition of preparing the modified latex can be obtained, i.e. the amount of emulsifier is 4.0%; the mass ratio of SR-10 to ANPEO-10 is 1:1; the amount of initiator is 0.5%; the mass ratio ofVAc to VeoVa10 is 1:1; the amount of DFHMA is 5.0%. The appearance of the latex is blue and translucent with a small particle size. The conversion rate is more than 98%. Compared with the conventional latex, the hydrophobicity and heat resistance of the film have been improved. Moreover, the latex has good chemical stability and mechanical stability.","PeriodicalId":15644,"journal":{"name":"Journal of Elastomers and Plastics","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135884060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Patents","authors":"","doi":"10.1177/00952443231206615","DOIUrl":"https://doi.org/10.1177/00952443231206615","url":null,"abstract":"","PeriodicalId":15644,"journal":{"name":"Journal of Elastomers and Plastics","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136112980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shambhu Lal Agrawal, Abhijit Adhikary, Jayesh Bhatt, Suresh C Ameta
{"title":"Vegetable oil extended emulsion styrene butadiene rubbers for passenger car radial tire tread application","authors":"Shambhu Lal Agrawal, Abhijit Adhikary, Jayesh Bhatt, Suresh C Ameta","doi":"10.1177/00952443231201968","DOIUrl":"https://doi.org/10.1177/00952443231201968","url":null,"abstract":"Currently emulsion polymerized Styrene Butadiene Rubber (E-SBR) is extended with various petroleum based mineral oils like Distillate Aromatic Extract (DAE), Treated Distillate Aromatic Extract (TDAE), Residual Aromatic Extract (RAE) and Naphthenic oils. It is obvious that introduction of vegetable oil should result in almost zero Polycyclic Aromatic Content (PCA) content and therefore, are environmentally friendly, renewable, and sustainable. In the present work, vegetable oil extended Styrene Butadiene Rubber (OE-SBR) were characterized for chemical properties and found that all the properties were meeting the specification requirements of mineral oils extended grades. These rubbers were also evaluated in standard Passenger Car Radial (PCR) tire tread compound recipe for various processing, different vulcanizate and other performance properties. The developed grades with vegetable oils required less mixing energy (around 10% for master batch and 15% for final batch) and shown better flow behavior (around 15% power law index and 20% activation energy reduction), better carbon dispersion (around 20%), high reinforcement index (around 15%), better rubber-filler interaction parameter (around 20%), better abrasion resistance (around 20%) and lower tanδ value @60°C (around 15%) as compared to TDAE oil extended SBR based compound. This may help to improve life of a PCR tire and reduction in fuel consumption of the vehicle.","PeriodicalId":15644,"journal":{"name":"Journal of Elastomers and Plastics","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136263516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Willian B. Ribeiro, Marcelo Godinho, Rosmary N. Brandalise
{"title":"Effect of residence time in the reactor on the reinforcement of biochar in rubber compounds","authors":"Willian B. Ribeiro, Marcelo Godinho, Rosmary N. Brandalise","doi":"10.1177/00952443231201965","DOIUrl":"https://doi.org/10.1177/00952443231201965","url":null,"abstract":"In the present work, the effect of residence time on the production of biochar by the pyrolysis process of Pinus spp. was investigated. Biochar was produced at three different residence times in the reactor (30, 60, and 240 min). The effect of residence time on the load in the pyrolysis process was evaluated based on the rheometric, physical and mechanical properties of the elastomeric compounds. The shortest residence time, 30 min, produced a biochar with a graphitic structure (turbostratic) that was ideal for the interaction between load and elastomer and caused the least possible disturbance to the crystallization process by stretching the natural rubber, which was observed from the tensile strength, while maintaining the mechanical properties. As the residence time increased, it was observed that the more crystalline structure interfered with the crystallization process of the natural rubber when stretched, causing a decrease in tensile strength and decreasing the interaction between the load- elastomer, thus increasing the vulcanization time of the rubber. The compound was prepared using the filler with the longest residence time (NR/BIO240min).","PeriodicalId":15644,"journal":{"name":"Journal of Elastomers and Plastics","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135980817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of swelling behavior of carbon nano-filler modified polydimethylsiloxane composites.","authors":"Bo Yang, Balakrishnan Nagarajan, Pierre Mertiny","doi":"10.1177/00952443211006156","DOIUrl":"https://doi.org/10.1177/00952443211006156","url":null,"abstract":"<p><p>Polymers may absorb fluids from their surroundings via the natural phenomenon of swelling. Dimensional changes due to swelling can affect the function of polymer components, such as in the case of seals, microfluidic components and electromechanical sensors. An understanding of the swelling behavior of polymers and means for controlling it can improve the design of polymer components, for example, for the previously mentioned applications. Carbon-based fillers have risen in popularity to be used for the property enhancement of resulting polymer composites. The present investigation focuses on the effects of three carbon-based nano-fillers (graphene nano-platelets, carbon black, and graphene nano-scrolls) on the dimensional changes of polydimethylsiloxane composites due to swelling when immersed in certain organic solvents. For this study, a facile and expedient methodology comprised of optical measurements in conjunction with digital image analysis was developed as the primary experimental technique to quantify swelling dimensional changes of the prepared composites. Other experimental techniques assessed polymer cross-linking densities and elastic mechanical properties of the various materials. The study revealed that the addition of certain carbon-based nano-fillers increased the overall swelling of the composites. The extent of swelling further depended on the organic solvent in which the composites were immersed in. Experimental findings are contrasted with published models for swelling prediction, and the role of filler morphology on swelling behavior is discussed.</p>","PeriodicalId":15644,"journal":{"name":"Journal of Elastomers and Plastics","volume":"53 8","pages":"955-974"},"PeriodicalIF":1.7,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/00952443211006156","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39743337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of Modified Bagasse and Investigation Properties of Its Novel Composite","authors":"S. Riyajan, I. Intharit","doi":"10.1177/0095244311413440","DOIUrl":"https://doi.org/10.1177/0095244311413440","url":null,"abstract":"Bagasse was modified with sodium hydroxide and silane, and the obtained three polymer composite types, namely natural fiber, sugarcane bagasse, and plaster were procured by the two-roll mill method. The characterization of the modified sugarcane bagasse was achieved with attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The results show that the presence of Si–CH3 group occurred on the bagasse surface after chemical modification. Adhesion force of cellulose changes after chemical treatment was observed from AFM. The optimum cure time (tc90) and torque of the natural fiber/plaster increased with increasing plaster loading in the composite. The modulus of the resulting composite increased with both plaster and bagasse but the tensile strength and elongation-at-break of the composite decreased as a function of plaster sugarcane bagasse. The polymer composite possesses the best properties at 5 part per hundred rubber (phr) bagasse loading and 30 phr plaster.","PeriodicalId":15644,"journal":{"name":"Journal of Elastomers and Plastics","volume":"6 6 1","pages":"513 - 528"},"PeriodicalIF":1.7,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87728705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}