{"title":"改性甘蔗渣的表征及其新型复合材料的性能研究","authors":"S. Riyajan, I. Intharit","doi":"10.1177/0095244311413440","DOIUrl":null,"url":null,"abstract":"Bagasse was modified with sodium hydroxide and silane, and the obtained three polymer composite types, namely natural fiber, sugarcane bagasse, and plaster were procured by the two-roll mill method. The characterization of the modified sugarcane bagasse was achieved with attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The results show that the presence of Si–CH3 group occurred on the bagasse surface after chemical modification. Adhesion force of cellulose changes after chemical treatment was observed from AFM. The optimum cure time (tc90) and torque of the natural fiber/plaster increased with increasing plaster loading in the composite. The modulus of the resulting composite increased with both plaster and bagasse but the tensile strength and elongation-at-break of the composite decreased as a function of plaster sugarcane bagasse. The polymer composite possesses the best properties at 5 part per hundred rubber (phr) bagasse loading and 30 phr plaster.","PeriodicalId":15644,"journal":{"name":"Journal of Elastomers and Plastics","volume":"6 6 1","pages":"513 - 528"},"PeriodicalIF":1.4000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Characterization of Modified Bagasse and Investigation Properties of Its Novel Composite\",\"authors\":\"S. Riyajan, I. Intharit\",\"doi\":\"10.1177/0095244311413440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bagasse was modified with sodium hydroxide and silane, and the obtained three polymer composite types, namely natural fiber, sugarcane bagasse, and plaster were procured by the two-roll mill method. The characterization of the modified sugarcane bagasse was achieved with attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The results show that the presence of Si–CH3 group occurred on the bagasse surface after chemical modification. Adhesion force of cellulose changes after chemical treatment was observed from AFM. The optimum cure time (tc90) and torque of the natural fiber/plaster increased with increasing plaster loading in the composite. The modulus of the resulting composite increased with both plaster and bagasse but the tensile strength and elongation-at-break of the composite decreased as a function of plaster sugarcane bagasse. The polymer composite possesses the best properties at 5 part per hundred rubber (phr) bagasse loading and 30 phr plaster.\",\"PeriodicalId\":15644,\"journal\":{\"name\":\"Journal of Elastomers and Plastics\",\"volume\":\"6 6 1\",\"pages\":\"513 - 528\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Elastomers and Plastics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/0095244311413440\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elastomers and Plastics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/0095244311413440","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Characterization of Modified Bagasse and Investigation Properties of Its Novel Composite
Bagasse was modified with sodium hydroxide and silane, and the obtained three polymer composite types, namely natural fiber, sugarcane bagasse, and plaster were procured by the two-roll mill method. The characterization of the modified sugarcane bagasse was achieved with attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The results show that the presence of Si–CH3 group occurred on the bagasse surface after chemical modification. Adhesion force of cellulose changes after chemical treatment was observed from AFM. The optimum cure time (tc90) and torque of the natural fiber/plaster increased with increasing plaster loading in the composite. The modulus of the resulting composite increased with both plaster and bagasse but the tensile strength and elongation-at-break of the composite decreased as a function of plaster sugarcane bagasse. The polymer composite possesses the best properties at 5 part per hundred rubber (phr) bagasse loading and 30 phr plaster.
期刊介绍:
The Journal of Elastomers and Plastics is a high quality peer-reviewed journal which publishes original research on the development and marketing of elastomers and plastics and the area in between where the characteristics of both extremes are apparent. The journal covers: advances in chemistry, processing, properties and applications; new information on thermoplastic elastomers, reinforced elastomers, natural rubbers, blends and alloys, and fillers and additives.