Yuxin Liu, Liangyan Liao, Zesheng Liang, Rulong Wu, Fang Yang
{"title":"Tensile creep behavior and structures of sisal fiber reinforced styrene butadiene thermoplastic elastomer/polystyrene composites","authors":"Yuxin Liu, Liangyan Liao, Zesheng Liang, Rulong Wu, Fang Yang","doi":"10.1177/00952443231212553","DOIUrl":null,"url":null,"abstract":"Styrene butadiene thermoplastic elastomer (SBS)/polystyrene (PS)/sisal fiber (SF) composites were prepared by melt-blending method. The tensile creep behavior of SBS/PS/SF composites was studied and fitted by four viscoelastic models including Findley, Burger, generalized Kelvin-Voigt and Maxwell models. The effects of content and surface properties of SF treated by alkali and silane coupling agent on the creep behavior, structures and thermal properties of the composites under the action of tensile stress were investigated. The results indicated that the generalized Kelvin-Voigt model and generalized Maxwell model could best fit the tensile creep behavior of SBS/PS/SF composites. The creep resistance and thermal stability of the composites improved with the increases of SF content and tensile stress. The interfacial properties of fiber and matrix were enhanced after SF treated by silane, which would be beneficial to the improvements of the creep resistance and thermal stability. The glass transition temperature of the composite increased with the increase of SF content, but decreased after the action of the tensile stress.","PeriodicalId":15644,"journal":{"name":"Journal of Elastomers and Plastics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elastomers and Plastics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00952443231212553","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Styrene butadiene thermoplastic elastomer (SBS)/polystyrene (PS)/sisal fiber (SF) composites were prepared by melt-blending method. The tensile creep behavior of SBS/PS/SF composites was studied and fitted by four viscoelastic models including Findley, Burger, generalized Kelvin-Voigt and Maxwell models. The effects of content and surface properties of SF treated by alkali and silane coupling agent on the creep behavior, structures and thermal properties of the composites under the action of tensile stress were investigated. The results indicated that the generalized Kelvin-Voigt model and generalized Maxwell model could best fit the tensile creep behavior of SBS/PS/SF composites. The creep resistance and thermal stability of the composites improved with the increases of SF content and tensile stress. The interfacial properties of fiber and matrix were enhanced after SF treated by silane, which would be beneficial to the improvements of the creep resistance and thermal stability. The glass transition temperature of the composite increased with the increase of SF content, but decreased after the action of the tensile stress.
期刊介绍:
The Journal of Elastomers and Plastics is a high quality peer-reviewed journal which publishes original research on the development and marketing of elastomers and plastics and the area in between where the characteristics of both extremes are apparent. The journal covers: advances in chemistry, processing, properties and applications; new information on thermoplastic elastomers, reinforced elastomers, natural rubbers, blends and alloys, and fillers and additives.