{"title":"Interactions between tea polyphenols and nutrients in food","authors":"Yi-Hui Dai, Jia-Ru Wei, Xiao-Qiang Chen","doi":"10.1111/1541-4337.13178","DOIUrl":"10.1111/1541-4337.13178","url":null,"abstract":"<p>Tea polyphenols (TPs) are important secondary metabolites in tea and are active in the food and drug industry because of their rich biological activities. In diet and food production, TPs are often in contact with other food nutrients, affecting their respective physicochemical properties and functional activity. Therefore, the interaction between TPs and food nutrients is a very important topic. In this review, we describe the interactions between TPs and food nutrients such as proteins, polysaccharides, and lipids, highlight the forms of their interactions, and discuss the changes in structure, function, and activity resulting from their interactions.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"22 4","pages":"3130-3150"},"PeriodicalIF":14.8,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5690511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuang Yu, Yueying Huang, Biao Shen, Wang Zhang, Yan Xie, Qi Gao, Dan Zhao, Zufang Wu, Yanan Liu
{"title":"Peptide hydrogels: Synthesis, properties, and applications in food science","authors":"Shuang Yu, Yueying Huang, Biao Shen, Wang Zhang, Yan Xie, Qi Gao, Dan Zhao, Zufang Wu, Yanan Liu","doi":"10.1111/1541-4337.13171","DOIUrl":"10.1111/1541-4337.13171","url":null,"abstract":"<p>Due to the unique and excellent biological, physical, and chemical properties of peptide hydrogels, their application in the biomedical field is extremely wide. The applications of peptide hydrogels are closely related to their unique responsiveness and excellent properties. However, its defects in mechanical properties, stability, and toxicity limit its application in the food field. In this review, we focus on the fabrication methods of peptide hydrogels through the physical, chemical, and biological stimulations. In addition, the functional design of peptide hydrogels by the incorporation with materials is discussed. Meanwhile, the excellent properties of peptide hydrogels such as the stimulus responsiveness, biocompatibility, antimicrobial properties, rheology, and stability are reviewed. Finally, the application of peptide hydrogel in the food field is summarized and prospected.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"22 4","pages":"3053-3083"},"PeriodicalIF":14.8,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5690510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Progress in research on the safety of silicone rubber products in food processing","authors":"Yi-Qi Liu, Zhi-Wei Wang, Chang-Ying Hu","doi":"10.1111/1541-4337.13165","DOIUrl":"10.1111/1541-4337.13165","url":null,"abstract":"<p>Silicone rubber (SR) is widely used in the food processing industry due to its excellent physical and chemical properties. However, due to the differences in SR product production formulas and processes, the quality of commercially available SR products varies greatly, with chemical and biological hazard potentials. Residual chemicals in SR, such as siloxane oligomers and 2,4-dichlorobenzoic acid, are non-intentionally added substances, which may migrate into food during processing so the safe use of SR must be guaranteed. Simultaneously, SR in contact with food is susceptible to pathogenic bacteria growing and biofilm formation, like <i>Cronobacter sakazakii</i>, <i>Staphylococcus aureus</i>, <i>Salmonella enteritidis</i>, and <i>Listeria monocytogenes</i>, posing a food safety risk. Under severe usage scenarios such as high-temperature, high-pressure, microwave, and freezing environments with long-term use, SR products are more prone to aging, and their degradation products may pose potential food safety hazards. Based on the goal of ensuring food quality and safety to the greatest extent possible, this review suggests that enterprises need to prepare high-quality food-contact SR products by optimizing the manufacturing formula and production process, and developing products with antibacterial and antiaging properties. The government departments should establish quality standards for food-contact SR products and conduct effective supervision. Besides, the reusable SR products should be cleaned by consumers immediately after use, and the deteriorated products should be replaced as soon as possible.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"22 4","pages":"2887-2909"},"PeriodicalIF":14.8,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5673550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Özgül Altay, Esin Selçuk, Ömer Abacı, Funda Erdem, S. Nur Dirim, Utku Şentürk, Figen Kaymak-Ertekin
{"title":"Recent progress in food processing applications of air impingement technology: A review","authors":"Özgül Altay, Esin Selçuk, Ömer Abacı, Funda Erdem, S. Nur Dirim, Utku Şentürk, Figen Kaymak-Ertekin","doi":"10.1111/1541-4337.13175","DOIUrl":"10.1111/1541-4337.13175","url":null,"abstract":"<p>Air impingement method has been widely used in a variety of industrial applications, such as textile and paper drying, turbine cooling, and glass quenching, because it is an efficient technology with high heat and mass transfer rates. This technology has received increasing interest in the field of food processing over the last two decades, such as drying, baking, blanching, freezing, and thawing. In a food processing equipment using air impingement, jets of high-velocity air (with speeds of 10–50 m/s) are directed at a food product. The performance of the system is influenced by several critical elements, including jet velocity, nozzle array diameter and layout, jet distance, and boundary layer characteristics. The use of computational fluid dynamics, an emerging tool, has been shown to be valuable in the analysis of fluid flow and heat and mass transfer in jet impingement systems. The physical properties of impinging jets, such as turbulent mixing in the free jet zone, stagnation, boundary layer formation, recirculation, and their interactions with food products in terms of heat and mass transfer, have been discussed in this article. The benefits and disadvantages of air jet impingement technology in different food processing applications together with potential trends for improving impingement technology performance were identified and discussed. This review not only contributes to a better understanding of the research status of impingement technology on food processing but also triggers new research opportunities in this field in order to provide more healthy and nutritious food in a more sustainable way to the world's growing population.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"22 4","pages":"3084-3104"},"PeriodicalIF":14.8,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5674389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Enrique Beitia, Elissavet Gkogka, Panagiotis Chanos, Christian Hertel, Volker Heinz, Vasilis Valdramidis, Kemal Aganovic
{"title":"Microbial decontamination assisted by ultrasound-based processing technologies in food and model systems: A review","authors":"Enrique Beitia, Elissavet Gkogka, Panagiotis Chanos, Christian Hertel, Volker Heinz, Vasilis Valdramidis, Kemal Aganovic","doi":"10.1111/1541-4337.13163","DOIUrl":"10.1111/1541-4337.13163","url":null,"abstract":"<p>Ultrasound (US) technology is recognized as one of the emerging technologies that arise from the current trends for improving nutritional and organoleptic properties while providing food safety. However, when applying the US alone, higher power and longer treatment times than conventional thermal treatments are needed to achieve a comparable level of microbial inactivation. This results in risks, damaging food products’ composition, structure, or sensory properties, and can lead to higher processing costs. Therefore, the US has often been investigated in combination with other approaches, like heating at mild temperatures and/or treatments at elevated pressure, use of antimicrobial substances, or other emerging technologies (e.g., high-pressure processing, pulsed electric fields, nonthermal plasma, or microwaves). A combination of US with different approaches has been reported to be less energy and time consuming. This manuscript aims to provide a broad review of the microbial inactivation efficacy of US technology in different food matrices and model systems. In particular, emphasis is given to the US in combination with the two most industrially viable physical processes, that is, heating at mild temperatures and/or treatments at elevated pressure, resulting in techniques known as thermosonication, manosonication, and manothermosonication. The available literature is reviewed, and critically discussed, and potential research gaps are identified. Additionally, discussions on the US's inactivation mechanisms and lethal effects are included. Finally, mathematical modeling approaches of microbial inactivation kinetics due to US-based processing technologies are also outlined. Overall, this review focuses only on the uses of the US and its combinations with other processes relevant to microbial food decontamination.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"22 4","pages":"2802-2849"},"PeriodicalIF":14.8,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1541-4337.13163","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5673565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antioxidant potential and factors influencing the content of antioxidant compounds of pepper: A review with current knowledge","authors":"Keithellakpam Sanatombi","doi":"10.1111/1541-4337.13170","DOIUrl":"10.1111/1541-4337.13170","url":null,"abstract":"<p>The use of natural food items as antioxidants has gained increasing popularity and attention in recent times supported by scientific studies validating the antioxidant properties of natural food items. Peppers (<i>Capsicum</i> spp.) are also important sources of antioxidants and several studies published during the last few decades identified and quantified various groups of phytochemicals with antioxidant capacities as well as indicated the influence of several pre- and postharvest factors on the antioxidant capacity of pepper. Therefore, this review summarizes the research findings on the antioxidant activity of pepper published to date and discusses their potential health benefits as well as the factors influencing the antioxidant activity in pepper. The major antioxidant compounds in pepper include capsaicinoids, capsinoids, vitamins, carotenoids, phenols, and flavonoids, and these antioxidants potentially modulate oxidative stress related to aging and diseases by targeting reactive oxygen and nitrogen species, lipid peroxidation products, as well as genes for transcription factors that regulate antioxidant response elements genes. The review also provides a systematic understanding of the factors that maintain or improve the antioxidant capacity of peppers and the application of these strategies offers options to pepper growers and spices industries for maximizing the antioxidant activity of peppers and their health benefits to consumers. In addition, the efficacy of pepper antioxidants, safety aspects, and formulations of novel products with pepper antioxidants have also been covered with future perspectives on potential innovative uses of pepper antioxidants in the future.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"22 4","pages":"3011-3052"},"PeriodicalIF":14.8,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5673574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arturo Alfaro-Diaz, Alejandro Escobedo, Diego A. Luna-Vital, Gustavo Castillo-Herrera, Luis Mojica
{"title":"Common beans as a source of food ingredients: Techno-functional and biological potential","authors":"Arturo Alfaro-Diaz, Alejandro Escobedo, Diego A. Luna-Vital, Gustavo Castillo-Herrera, Luis Mojica","doi":"10.1111/1541-4337.13166","DOIUrl":"10.1111/1541-4337.13166","url":null,"abstract":"<p>Common beans are an inexpensive source of high-quality food ingredients. They are rich in proteins, slowly digestible starch, fiber, phenolic compounds, and other bioactive molecules that could be separated and processed to obtain value-added ingredients with techno-functional and biological potential. The use of common beans in the food industry is a promising alternative to add nutritional and functional ingredients with a low impact on overall consumer acceptance. Researchers are evaluating traditional and novel technologies to develop functionally enhanced common bean ingredients, such as flours, proteins, starch powders, and phenolic extracts that could be introduced as functional ingredient alternatives in the food industry. This review compiles recent information on processing, techno-functional properties, food applications, and the biological potential of common bean ingredients. The evidence shows that incorporating an adequate proportion of common bean ingredients into regular foods such as pasta, bread, or nutritional bars improves their fiber, protein, phenolic compounds, and glycemic index profile without considerably affecting their organoleptic properties. Additionally, common bean consumption has shown health benefits in the gut microbiome, weight control, and the reduction of the risk of developing noncommunicable diseases. However, food matrix interaction studies and comprehensive clinical trials are needed to develop common bean ingredient applications and validate the health benefits over time.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"22 4","pages":"2910-2944"},"PeriodicalIF":14.8,"publicationDate":"2023-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6236026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siwei Miao, Yang Wei, Yi Pan, Yuanfeng Wang, Xinlin Wei
{"title":"Detection methods, migration patterns, and health effects of pesticide residues in tea","authors":"Siwei Miao, Yang Wei, Yi Pan, Yuanfeng Wang, Xinlin Wei","doi":"10.1111/1541-4337.13167","DOIUrl":"10.1111/1541-4337.13167","url":null,"abstract":"<p>Due to its rich health benefits and unique cultural charm, tea drinking is increasingly popular with the public in modern society. The safety of tea is the top priority that affects the development of tea industry and the health of consumers. During the process of tea growth, pesticides are used to prevent the invasion of pests and diseases with maintaining high quality and stable yield. Because hot water brewing is the traditional way of tea consumption, water is the main carrier for pesticide residues in tea into human body accompanied by potential risks. In this review, pesticides used in tea gardens are divided into two categories according to their solubility, among which water-soluble pesticides pose a greater risk. We summarized the methods of the sample pretreatment and detection of pesticide residues and expounded the migration patterns and influencing factors of tea throughout the process of growth, processing, storage, and consumption. Moreover, the toxicity and safety of pesticide residues and diseases caused by human intake were analyzed. The risk assessment and traceability of pesticide residues in tea were carried out, and potential eco-friendly improvement strategies were proposed. The review is expected to provide a valuable reference for reducing risks of pesticide residues in tea and ensuring the safety of tea consumption.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"22 4","pages":"2945-2976"},"PeriodicalIF":14.8,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6209790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xue Wang, Lei Zhang, Li Chen, Yang Wang, Clinton Emeka Okonkwo, Abu El-Gasim A. Yagoub, Hafida Wahia, Cunshan Zhou
{"title":"Application of ultrasound and its real-time monitoring of the acoustic field during processing of tofu: Parameter optimization, protein modification, and potential mechanism","authors":"Xue Wang, Lei Zhang, Li Chen, Yang Wang, Clinton Emeka Okonkwo, Abu El-Gasim A. Yagoub, Hafida Wahia, Cunshan Zhou","doi":"10.1111/1541-4337.13161","DOIUrl":"10.1111/1541-4337.13161","url":null,"abstract":"<p>Tofu is nutritious, easy to make, and popular among consumers. At present, traditional tofu production has gradually become perfect, but there are still shortcomings, such as long soaking time, serious waste of water resources, and the inability to realize orders for production at any time. Moreover, tofu production standards have not yet been clearly defined, with large differences in quality between them, which is not conducive to industrialized and large-scale production. Ultrasound has become a promising green processing technology with advantages, such as high extraction rate, short processing time, and ease of operation. This review focused on the challenges associated with traditional tofu production during soaking, grinding, and boiling soybeans. Moreover, the advantages of ultrasonic processing over traditional processing like increasing nutrient content, improving gel properties, and inhibiting the activity of microorganisms were explained. Furthermore, the quantification of acoustic fields by real-time monitoring technology was introduced to construct the theoretical correlation between ultrasonic treatments and tofu processing. It was concluded that ultrasonic treatment improved the functional properties of soybean protein, such as solubility, emulsifying properties, foamability, rheological properties, gel strength, and thermal stability. Therefore, the application of ultrasonic technology to traditional tofu processing to optimize industrial parameters is promising.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"22 4","pages":"2747-2772"},"PeriodicalIF":14.8,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5779423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}