Md Anamul Hasan Chowdhury, Chowdhury Sanat Anjum Reem, Md. Ashrafudoulla, Md. Ashikur Rahman, Shanjida Shaila, Angela Jie-won Ha, Sang-Do Ha
{"title":"Role of advanced cleaning and sanitation techniques in biofilm prevention on dairy equipment","authors":"Md Anamul Hasan Chowdhury, Chowdhury Sanat Anjum Reem, Md. Ashrafudoulla, Md. Ashikur Rahman, Shanjida Shaila, Angela Jie-won Ha, Sang-Do Ha","doi":"10.1111/1541-4337.70176","DOIUrl":"https://doi.org/10.1111/1541-4337.70176","url":null,"abstract":"<p>Biofilm formation on dairy equipment is a persistent challenge in the dairy industry, contributing to product contamination, equipment inefficiency, and economic losses. Traditional methods such as manual cleaning and basic chemical sanitation are discussed as foundational approaches, followed by an in-depth investigation of cutting-edge technologies, including clean-in-place systems, high-pressure cleaning, foam cleaning, ultrasonic and electrochemical cleaning, dry ice blasting, robotics, nanotechnology-based agents, enzymatic cleaners, and oxidizing agents. Enhanced sanitation techniques, such as dry steam, pulsed light, acidic and alkaline electrolyzed water, hydrogen peroxide vapor, microbubble technology, and biodegradable biocides, are highlighted for their potential to achieve superior sanitation while promoting sustainability. The effectiveness, feasibility, and limitations of these methods are evaluated, emphasizing their role in maintaining dairy equipment hygiene and reducing biofilm-associated risks. Additionally, challenges, such as equipment compatibility, cost, and regulatory compliance, are addressed, along with insights into future directions and innovations, including automation, smart cleaning systems, and green cleaning solutions. This review provides a comprehensive resource for researchers, industry professionals, and policymakers aiming to tackle biofilm formation in dairy production systems and enhance food safety, operational efficiency, and sustainability.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 3","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143856831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in ozone technology for preservation of grains and end products: Application techniques, control of microbial contaminants, mitigation of mycotoxins, impact on quality, and regulatory approvals","authors":"Eugénio da Piedade Edmundo Sitoe, Flaviana Coelho Pacheco, Florentina Domingos Chilala","doi":"10.1111/1541-4337.70173","DOIUrl":"https://doi.org/10.1111/1541-4337.70173","url":null,"abstract":"<p>Ozone has emerged as a promising technology for preserving stored grains and end products. Its efficiency as a biocide and the absence of residues make it an attractive alternative to traditional chemical methods of food preservation. This study reviews recent advancements in ozone application techniques, including continuous flow treatments, closed-loop recirculation systems, and low-pressure application systems, as well as their impact on product quality. The study also examines the mechanisms of ozone action, its half-life in grain storage environments, and methods to ensure uniform gas distribution. The results of this study provide a foundation for understanding ozone reactions in various grain types and application systems, offering essential information for effectively sizing treatment systems, estimating ozone concentrations over time, and determining the quantity of products to be treated. A thorough comprehension of ozone behavior in porous environments, such as silos, and its stability under diverse environmental conditions is crucial for enhancing its applicability. While scientific evidence supports ozone's efficacy in controlling pests and microorganisms, further investigation is needed on its impact on the nutritional quality of grains and final products. Additionally, the review highlights the latest regulatory approvals for ozone use in the food industry, emphasizing the importance of compliance and safety. The findings underscore the need for continued technological development and economic analysis to evaluate the long-term viability of ozone applications in agriculture.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 3","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1541-4337.70173","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143856825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mati Ullah Khan, Pengfei Yu, Yuyin Wu, Zhiwei Chen, Ling Kong, Anum Farid, Jiaqi Cui, Jun Yang
{"title":"Comprehensive review of enzymes (protease, lipase) in milk: Impact on storage quality, detection methods, and control strategies","authors":"Mati Ullah Khan, Pengfei Yu, Yuyin Wu, Zhiwei Chen, Ling Kong, Anum Farid, Jiaqi Cui, Jun Yang","doi":"10.1111/1541-4337.70164","DOIUrl":"https://doi.org/10.1111/1541-4337.70164","url":null,"abstract":"<p>Enzymes play a crucial role in determining the storage quality of milk by influencing various biochemical processes. Among these enzymes, proteases and lipases are of particular significance due to their impact on flavor, texture, and shelf-life stability. This study offers a thorough examination of proteases and lipases in milk, focusing on their enzymatic activities and mechanisms of action during storage. The present review addresses the techniques for monitoring enzyme activity, including fluorescence-based assays, spectrophotometry, fluorometry, mass spectrometry, biosensors, ELISA, polymerase chain reaction, and next-generation sequencing, emphasizing their sensitivity and applicability in quality control. Furthermore, various strategies for controlling enzyme activity in milk are examined, encompassing both thermal and non-thermal treatments, pH modulation, and the use of enzyme inhibitors. Additionally, the review explores the regulatory frameworks governing enzyme activity in dairy products to ensure compliance with safety and quality standards. A thorough understanding of the dynamics of proteases and lipases in dairy products is crucial for optimizing storage conditions, ensuring product quality, and meeting consumer demands for purity and nutritional integrity.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 3","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143856828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From waste to value: Integrating legume byproducts into sustainable industrialization","authors":"Jing-Chao Yu, Ying-Jin-Zhu Wu, Weon-Sun Shin","doi":"10.1111/1541-4337.70174","DOIUrl":"https://doi.org/10.1111/1541-4337.70174","url":null,"abstract":"<p>As the global demand for sustainable food sources grows, the effective utilization of agro-industrial byproducts has become increasingly essential. Among these, legume byproducts, which are often discarded as waste, hold substantial nutritional and functional properties that can significantly contribute to advancing circular economy goals within the food industry. Current research has unveiled the potential of these byproducts to enhance both environmental sustainability and economic efficiency. Rich in proteins, dietary fibers, and bioactive compounds, legume byproducts can serve as valuable resources in developing functional food ingredients. This review explores the nutritional profiles of various legume byproducts and highlights innovative processes and technologies involved in their valorization, such as fermentation, enzymatic treatments, and novel extraction techniques. Furthermore, it explores the impact of food formulations in optimizing the functional properties of legume byproduct-based ingredients, considering their impact on texture, stability, and sensory attributes. Consumer perceptions of sustainable products derived from these ingredients are also examined, emphasizing their potential to reshape modern dietary preferences toward more sustainable choices. However, despite the promising potential of these byproducts, several challenges remain to be solved, including the antinutrients factor, market limitations, limited consumer awareness, and complexities in scaling up production. In addition, it is essential to integrate circular economy principles and conduct life-cycle assessments throughout the value chain to ensure the sustainable use of legume byproducts. Addressing these challenges is critical to enhancing the valorization of legume byproducts and promoting a more comprehensive approach to food system sustainability.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 3","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1541-4337.70174","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143856830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From waste to value: Integrating legume byproducts into sustainable industrialization","authors":"Jing-Chao Yu, Ying-Jin-Zhu Wu, Weon-Sun Shin","doi":"10.1111/1541-4337.70174","DOIUrl":"https://doi.org/10.1111/1541-4337.70174","url":null,"abstract":"<p>As the global demand for sustainable food sources grows, the effective utilization of agro-industrial byproducts has become increasingly essential. Among these, legume byproducts, which are often discarded as waste, hold substantial nutritional and functional properties that can significantly contribute to advancing circular economy goals within the food industry. Current research has unveiled the potential of these byproducts to enhance both environmental sustainability and economic efficiency. Rich in proteins, dietary fibers, and bioactive compounds, legume byproducts can serve as valuable resources in developing functional food ingredients. This review explores the nutritional profiles of various legume byproducts and highlights innovative processes and technologies involved in their valorization, such as fermentation, enzymatic treatments, and novel extraction techniques. Furthermore, it explores the impact of food formulations in optimizing the functional properties of legume byproduct-based ingredients, considering their impact on texture, stability, and sensory attributes. Consumer perceptions of sustainable products derived from these ingredients are also examined, emphasizing their potential to reshape modern dietary preferences toward more sustainable choices. However, despite the promising potential of these byproducts, several challenges remain to be solved, including the antinutrients factor, market limitations, limited consumer awareness, and complexities in scaling up production. In addition, it is essential to integrate circular economy principles and conduct life-cycle assessments throughout the value chain to ensure the sustainable use of legume byproducts. Addressing these challenges is critical to enhancing the valorization of legume byproducts and promoting a more comprehensive approach to food system sustainability.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 3","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1541-4337.70174","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143856827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in ozone technology for preservation of grains and end products: Application techniques, control of microbial contaminants, mitigation of mycotoxins, impact on quality, and regulatory approvals","authors":"Eugénio da Piedade Edmundo Sitoe, Flaviana Coelho Pacheco, Florentina Domingos Chilala","doi":"10.1111/1541-4337.70173","DOIUrl":"https://doi.org/10.1111/1541-4337.70173","url":null,"abstract":"<p>Ozone has emerged as a promising technology for preserving stored grains and end products. Its efficiency as a biocide and the absence of residues make it an attractive alternative to traditional chemical methods of food preservation. This study reviews recent advancements in ozone application techniques, including continuous flow treatments, closed-loop recirculation systems, and low-pressure application systems, as well as their impact on product quality. The study also examines the mechanisms of ozone action, its half-life in grain storage environments, and methods to ensure uniform gas distribution. The results of this study provide a foundation for understanding ozone reactions in various grain types and application systems, offering essential information for effectively sizing treatment systems, estimating ozone concentrations over time, and determining the quantity of products to be treated. A thorough comprehension of ozone behavior in porous environments, such as silos, and its stability under diverse environmental conditions is crucial for enhancing its applicability. While scientific evidence supports ozone's efficacy in controlling pests and microorganisms, further investigation is needed on its impact on the nutritional quality of grains and final products. Additionally, the review highlights the latest regulatory approvals for ozone use in the food industry, emphasizing the importance of compliance and safety. The findings underscore the need for continued technological development and economic analysis to evaluate the long-term viability of ozone applications in agriculture.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 3","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1541-4337.70173","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143856887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Md Anamul Hasan Chowdhury, Chowdhury Sanat Anjum Reem, Md. Ashrafudoulla, Md. Ashikur Rahman, Shanjida Shaila, Angela Jie-won Ha, Sang-Do Ha
{"title":"Role of advanced cleaning and sanitation techniques in biofilm prevention on dairy equipment","authors":"Md Anamul Hasan Chowdhury, Chowdhury Sanat Anjum Reem, Md. Ashrafudoulla, Md. Ashikur Rahman, Shanjida Shaila, Angela Jie-won Ha, Sang-Do Ha","doi":"10.1111/1541-4337.70176","DOIUrl":"https://doi.org/10.1111/1541-4337.70176","url":null,"abstract":"<p>Biofilm formation on dairy equipment is a persistent challenge in the dairy industry, contributing to product contamination, equipment inefficiency, and economic losses. Traditional methods such as manual cleaning and basic chemical sanitation are discussed as foundational approaches, followed by an in-depth investigation of cutting-edge technologies, including clean-in-place systems, high-pressure cleaning, foam cleaning, ultrasonic and electrochemical cleaning, dry ice blasting, robotics, nanotechnology-based agents, enzymatic cleaners, and oxidizing agents. Enhanced sanitation techniques, such as dry steam, pulsed light, acidic and alkaline electrolyzed water, hydrogen peroxide vapor, microbubble technology, and biodegradable biocides, are highlighted for their potential to achieve superior sanitation while promoting sustainability. The effectiveness, feasibility, and limitations of these methods are evaluated, emphasizing their role in maintaining dairy equipment hygiene and reducing biofilm-associated risks. Additionally, challenges, such as equipment compatibility, cost, and regulatory compliance, are addressed, along with insights into future directions and innovations, including automation, smart cleaning systems, and green cleaning solutions. This review provides a comprehensive resource for researchers, industry professionals, and policymakers aiming to tackle biofilm formation in dairy production systems and enhance food safety, operational efficiency, and sustainability.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 3","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143856826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mati Ullah Khan, Pengfei Yu, Yuyin Wu, Zhiwei Chen, Ling Kong, Anum Farid, Jiaqi Cui, Jun Yang
{"title":"Comprehensive review of enzymes (protease, lipase) in milk: Impact on storage quality, detection methods, and control strategies","authors":"Mati Ullah Khan, Pengfei Yu, Yuyin Wu, Zhiwei Chen, Ling Kong, Anum Farid, Jiaqi Cui, Jun Yang","doi":"10.1111/1541-4337.70164","DOIUrl":"https://doi.org/10.1111/1541-4337.70164","url":null,"abstract":"<p>Enzymes play a crucial role in determining the storage quality of milk by influencing various biochemical processes. Among these enzymes, proteases and lipases are of particular significance due to their impact on flavor, texture, and shelf-life stability. This study offers a thorough examination of proteases and lipases in milk, focusing on their enzymatic activities and mechanisms of action during storage. The present review addresses the techniques for monitoring enzyme activity, including fluorescence-based assays, spectrophotometry, fluorometry, mass spectrometry, biosensors, ELISA, polymerase chain reaction, and next-generation sequencing, emphasizing their sensitivity and applicability in quality control. Furthermore, various strategies for controlling enzyme activity in milk are examined, encompassing both thermal and non-thermal treatments, pH modulation, and the use of enzyme inhibitors. Additionally, the review explores the regulatory frameworks governing enzyme activity in dairy products to ensure compliance with safety and quality standards. A thorough understanding of the dynamics of proteases and lipases in dairy products is crucial for optimizing storage conditions, ensuring product quality, and meeting consumer demands for purity and nutritional integrity.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 3","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143856829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yini Yang, Linhai Wang, Qianchun Deng, Ye Liu, Qi Zhou
{"title":"What contributes to the richness and stability of the sesame flavor?","authors":"Yini Yang, Linhai Wang, Qianchun Deng, Ye Liu, Qi Zhou","doi":"10.1111/1541-4337.70155","DOIUrl":"https://doi.org/10.1111/1541-4337.70155","url":null,"abstract":"<p>Sesame, an oilseed crop with a long history, is renowned for its distinctive flavor characteristics and diverse uses. In-depth research on the stable and potent flavor components in sesame not only enhances the taste and aroma of sesame products but also promotes their high-value utilization. This review comprehensively discusses the latest advancements in the flavor of processed sesame foods, systematically categorizing 187 compounds that contribute to the flavor. The focus is on sulfur-containing compounds and heterocyclic compounds. From a molecular sensory perspective, this study explores the impact of various factors on flavor profiles. Moreover, sesame seeds contain natural polyphenols, such as sesamin, sesamol, and sesamolin, which enhance the flavor and stability of sesame products and play a crucial role in maintaining the stability during processing and storage. Future research should focus on using machine learning models for real-time flavor optimization. This approach can leverage robust data analysis to adjust parameters promptly and achieve desired flavor outcomes. Additionally, integrating cutting-edge detection technology to establish a comprehensive sesame food flavor database will provide essential data for flavor research, simplify the flavor enhancement process, ensure scientific and efficient flavor adjustment, and maintain stable flavor quality. This will help to promote the development and utilization of nutritious and delicious sesame products in-line with consumer preferences, thereby driving growth in the sesame industry.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 3","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143840754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wasim Akhtar, Adriana Teresa Ceci, Edoardo Longo, Marco Adolfo Marconi, Francesco Lonardi, Emanuele Boselli
{"title":"Dealcoholized wine: Techniques, sensory impacts, stability, and perspectives of a growing industry","authors":"Wasim Akhtar, Adriana Teresa Ceci, Edoardo Longo, Marco Adolfo Marconi, Francesco Lonardi, Emanuele Boselli","doi":"10.1111/1541-4337.70171","DOIUrl":"https://doi.org/10.1111/1541-4337.70171","url":null,"abstract":"<p>The category of dealcoholized wine is receiving mounting interest within the wine industry related to the ability to retain sensory characteristics similar to regular wine while reducing or completely removing the alcohol level. This option has led health-conscious consumers to seek a lower alcohol alternative without compromising the authentic wine experience. This review provides a comprehensive overview of the various dealcoholization techniques that are being used in the production of dealcoholized and partial dealcoholized wine, specifically examining reverse osmosis, osmotic distillation, vacuum distillation, spinning cone column, pervaporation, and diafiltration along with the effects of these methods on chemical and sensory characteristics of wine, involving flavor, aroma, mouthfeel, and finish. Various aspects of the impact of dealcoholization on wine stability were explored, including chemical, microbial, oxidative, and color stability. Furthermore, the market analysis of dealcoholized wine products including present and future growth in different regions is reported. Understanding these factors is of utmost importance for dealcoholized wine's growing advancement and market success, as it endeavors to accommodate various customer demands and preferences in a swiftly changing beverage environment.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 3","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1541-4337.70171","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143840529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}