Journal of Developmental Biology最新文献

筛选
英文 中文
Tissue Rotation of the Xenopus Anterior-Posterior Neural Axis Reveals Profound but Transient Plasticity at the Mid-Gastrula Stage. 非洲爪蟾前后神经轴的组织旋转显示出在中胃泌素阶段的深刻但短暂的可塑性。
IF 2.2
Journal of Developmental Biology Pub Date : 2022-09-10 DOI: 10.3390/jdb10030038
Lyuba Bolkhovitinov, Bryan T Weselman, Gladys A Shaw, Chen Dong, Janhavi Giribhattanavar, Margaret S Saha
{"title":"Tissue Rotation of the <i>Xenopus</i> Anterior-Posterior Neural Axis Reveals Profound but Transient Plasticity at the Mid-Gastrula Stage.","authors":"Lyuba Bolkhovitinov, Bryan T Weselman, Gladys A Shaw, Chen Dong, Janhavi Giribhattanavar, Margaret S Saha","doi":"10.3390/jdb10030038","DOIUrl":"10.3390/jdb10030038","url":null,"abstract":"<p><p>The establishment of anterior-posterior (AP) regional identity is an essential step in the appropriate development of the vertebrate central nervous system. An important aspect of AP neural axis formation is the inherent plasticity that allows developing cells to respond to and recover from the various perturbations that embryos continually face during the course of development. While the mechanisms governing the regionalization of the nervous system have been extensively studied, relatively less is known about the nature and limits of early neural plasticity of the anterior-posterior neural axis. This study aims to characterize the degree of neural axis plasticity in <i>Xenopus laevis</i> by investigating the response of embryos to a 180-degree rotation of their AP neural axis during gastrula stages by assessing the expression of regional marker genes using in situ hybridization. Our results reveal the presence of a narrow window of time between the mid- and late gastrula stage, during which embryos are able undergo significant recovery following a 180-degree rotation of their neural axis and eventually express appropriate regional marker genes including <i>Otx</i>, <i>Engrailed</i>, and <i>Krox</i>. By the late gastrula stage, embryos show misregulation of regional marker genes following neural axis rotation, suggesting that this profound axial plasticity is a transient phenomenon that is lost by late gastrula stages.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"10 3","pages":""},"PeriodicalIF":2.2,"publicationDate":"2022-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503425/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9194361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spina Bifida: A Review of the Genetics, Pathophysiology and Emerging Cellular Therapies. 脊柱裂:遗传学、病理生理学和新兴细胞疗法的综述。
IF 2.7
Journal of Developmental Biology Pub Date : 2022-06-06 DOI: 10.3390/jdb10020022
Abd-Elrahman Said Hassan, Yimeng Lina Du, Su Yeon Lee, Aijun Wang, Diana Lee Farmer
{"title":"Spina Bifida: A Review of the Genetics, Pathophysiology and Emerging Cellular Therapies.","authors":"Abd-Elrahman Said Hassan,&nbsp;Yimeng Lina Du,&nbsp;Su Yeon Lee,&nbsp;Aijun Wang,&nbsp;Diana Lee Farmer","doi":"10.3390/jdb10020022","DOIUrl":"https://doi.org/10.3390/jdb10020022","url":null,"abstract":"<p><p>Spina bifida is the most common congenital defect of the central nervous system which can portend lifelong disability to those afflicted. While the complete underpinnings of this disease are yet to be fully understood, there have been great advances in the genetic and molecular underpinnings of this disease. Moreover, the treatment for spina bifida has made great advancements, from surgical closure of the defect after birth to the now state-of-the-art intrauterine repair. This review will touch upon the genetics, embryology, and pathophysiology and conclude with a discussion on current therapy, as well as the first FDA-approved clinical trial utilizing stem cells as treatment for spina bifida.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"10 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9224552/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10698233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
A Review of Delayed Delivery Models and the Analysis Method in Mice 小鼠延迟分娩模型及分析方法综述
IF 2.7
Journal of Developmental Biology Pub Date : 2022-05-20 DOI: 10.3390/jdb10020020
Hiroshi Yomogita, N. Miyasaka, M. Kanai-Azuma
{"title":"A Review of Delayed Delivery Models and the Analysis Method in Mice","authors":"Hiroshi Yomogita, N. Miyasaka, M. Kanai-Azuma","doi":"10.3390/jdb10020020","DOIUrl":"https://doi.org/10.3390/jdb10020020","url":null,"abstract":"In humans, the incidence of post-term delivery is 1–10%. Post-term delivery significantly increases the risk of cesarean section or neonatal intensive care unit (NICU) admission. Despite these serious challenges, the cause of prolonged delivery remains unclear. Several common factors of delayed parturition between mice and humans will help elucidate the mechanisms of pregnancy and labor. At present, gene modification techniques are rapidly developing; however, there are limited reviews available describing the mouse phenotype analysis as a human model for post-term delivery. We classified the delayed-labor mice into nine types according to their causes. In mice, progesterone (P₄) maintains pregnancy, and the most common cause of delayed labor is luteolysis failure. Other contributing factors include humoral molecules in the fetus/placenta, uterine contractile dysfunction, poor cervical ripening, and delayed implantation. The etiology of delayed parturition is overexpression of the pregnancy maintenance mechanism or suppression of the labor induction mechanism. Here, we describe how to investigated their causes using mouse genetic analysis. In addition, we generated a list to identify the causes. Our review will help understand the findings obtained using the mouse model, providing a foundation for conducting more systematic research on delayed delivery.","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41460287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Pax3 Hypomorphs Reveal Hidden Pax7 Functional Genetic Compensation in Utero Pax3亚型揭示子宫中隐藏的Pax7功能遗传补偿
IF 2.7
Journal of Developmental Biology Pub Date : 2022-05-17 DOI: 10.3390/jdb10020019
Hong-Ming Zhou, S. Conway
{"title":"Pax3 Hypomorphs Reveal Hidden Pax7 Functional Genetic Compensation in Utero","authors":"Hong-Ming Zhou, S. Conway","doi":"10.3390/jdb10020019","DOIUrl":"https://doi.org/10.3390/jdb10020019","url":null,"abstract":"Pax3 and Pax7 transcription factors are paralogs within the Pax gene family that that are expressed in early embryos in partially overlapping expression domains and have distinct functions. Significantly, mammalian development is largely unaffected by Pax7 systemic deletion but systemic Pax3 deletion results in defects in neural tube closure, neural crest emigration, cardiac outflow tract septation, muscle hypoplasia and in utero lethality by E14. However, we previously demonstrated that Pax3 hypomorphs expressing only 20% functional Pax3 protein levels exhibit normal neural tube and heart development, but myogenesis is selectively impaired. To determine why only some Pax3-expressing cell lineages are affected and to further titrate Pax3 threshold levels required for neural tube and heart development, we generated hypomorphs containing both a hypomorphic and a null Pax3 allele. This resulted in mutants only expressing 10% functional Pax3 protein with exacerbated neural tube, neural crest and muscle defects, but still a normal heart. To examine why the cardiac neural crest appears resistant to very low Pax3 levels, we examined its paralog Pax7. Significantly, Pax7 expression is both ectopically expressed in Pax3-expressing dorsal neural tube cells and is also upregulated in the Pax3-expressing lineages. To test whether this compensatory Pax7 expression is functional, we deleted Pax7 both systemically and lineage-specifically in hypomorphs expressing only 10% Pax3. Removal of one Pax7 allele resulted in partial outflow tract defects, and complete loss of Pax7 resulted in full penetrance outflow tract defects and in utero lethality. Moreover, combinatorial loss of Pax3 and Pax7 resulted in severe craniofacial defects and a total block of neural crest cell emigration from the neural tube. Pax7Cre lineage mapping revealed ectopic labeling of Pax3-derived neural crest tissues and within the outflow tract of the heart, experimentally confirming the observation of ectopic activation of Pax7 in 10% Pax3 hypomorphs. Finally, genetic cell ablation of Pax7Cre-marked cells is sufficient to cause outflow tract defects in hypomorphs expressing only 10% Pax3, confirming that ectopic and induced Pax7 can play an overlapping functional genetic compensational role in both cardiac neural crest lineage and during craniofacial development, which is normally masked by the dominant role of Pax3.","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41681304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Craniofacial Phenotypes and Genetics of DiGeorge Syndrome 迪乔治综合征颅面表型和遗传学
IF 2.7
Journal of Developmental Biology Pub Date : 2022-05-13 DOI: 10.3390/jdb10020018
N. Funato
{"title":"Craniofacial Phenotypes and Genetics of DiGeorge Syndrome","authors":"N. Funato","doi":"10.3390/jdb10020018","DOIUrl":"https://doi.org/10.3390/jdb10020018","url":null,"abstract":"The 22q11.2 deletion is one of the most common genetic microdeletions, affecting approximately 1 in 4000 live births in humans. A 1.5 to 2.5 Mb hemizygous deletion of chromosome 22q11.2 causes DiGeorge syndrome (DGS) and velocardiofacial syndrome (VCFS). DGS/VCFS are associated with prevalent cardiac malformations, thymic and parathyroid hypoplasia, and craniofacial defects. Patients with DGS/VCFS manifest craniofacial anomalies involving the cranium, cranial base, jaws, pharyngeal muscles, ear-nose-throat, palate, teeth, and cervical spine. Most craniofacial phenotypes of DGS/VCFS are caused by proximal 1.5 Mb microdeletions, resulting in a hemizygosity of coding genes, microRNAs, and long noncoding RNAs. TBX1, located on chromosome 22q11.21, encodes a T-box transcription factor and is a candidate gene for DGS/VCFS. TBX1 regulates the fate of progenitor cells in the cranial and pharyngeal apparatus during embryogenesis. Tbx1-null mice exhibit the most clinical features of DGS/VCFS, including craniofacial phenotypes. Despite the frequency of DGS/VCFS, there has been a limited review of the craniofacial phenotypes of DGC/VCFS. This review focuses on these phenotypes and summarizes the current understanding of the genetic factors that impact DGS/VCFS-related phenotypes. We also review DGS/VCFS mouse models that have been designed to better understand the pathogenic processes of DGS/VCFS.","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46108710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Genetic Interaction of Thm2 and Thm1 Shapes Postnatal Craniofacial Bone Thm2和Thm1的遗传相互作用形成出生后颅面骨
IF 2.7
Journal of Developmental Biology Pub Date : 2022-05-11 DOI: 10.3390/jdb10020017
E. Bumann, Portia Hahn Leat, Henry H. Wang, Brittany M Hufft-Martinez, Wei Wang, P. Tran
{"title":"Genetic Interaction of Thm2 and Thm1 Shapes Postnatal Craniofacial Bone","authors":"E. Bumann, Portia Hahn Leat, Henry H. Wang, Brittany M Hufft-Martinez, Wei Wang, P. Tran","doi":"10.3390/jdb10020017","DOIUrl":"https://doi.org/10.3390/jdb10020017","url":null,"abstract":"Ciliopathies are genetic syndromes that link skeletal dysplasias to the dysfunction of primary cilia. Primary cilia are sensory organelles synthesized by intraflagellar transport (IFT)—A and B complexes, which traffic protein cargo along a microtubular core. We have reported that the deletion of the IFT-A gene, Thm2, together with a null allele of its paralog, Thm1, causes a small skeleton with a small mandible or micrognathia in juvenile mice. Using micro-computed tomography, here we quantify the craniofacial defects of Thm2−/−; Thm1aln/+ triple allele mutant mice. At postnatal day 14, triple allele mutant mice exhibited micrognathia, midface hypoplasia, and a decreased facial angle due to shortened upper jaw length, premaxilla, and nasal bones, reflecting altered development of facial anterior-posterior elements. Mutant mice also showed increased palatal width, while other aspects of the facial transverse, as well as vertical dimensions, remained intact. As such, other ciliopathy-related craniofacial defects, such as cleft lip and/or palate, hypo-/hypertelorism, broad nasal bridge, craniosynostosis, and facial asymmetry, were not observed. Calvarial-derived osteoblasts of triple allele mutant mice showed reduced bone formation in vitro that was ameliorated by Hedgehog agonist, SAG. Together, these data indicate that Thm2 and Thm1 genetically interact to regulate bone formation and sculpting of the postnatal face. The triple allele mutant mice present a novel model to study craniofacial bone development.","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49127090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two Modulators of Skeletal Development: BMPs and Proteoglycans 骨骼发育的两种调节剂:BMP和蛋白聚糖
IF 2.7
Journal of Developmental Biology Pub Date : 2022-04-06 DOI: 10.3390/jdb10020015
Elham Koosha, B. Eames
{"title":"Two Modulators of Skeletal Development: BMPs and Proteoglycans","authors":"Elham Koosha, B. Eames","doi":"10.3390/jdb10020015","DOIUrl":"https://doi.org/10.3390/jdb10020015","url":null,"abstract":"During embryogenesis, skeletal development is tightly regulated by locally secreted growth factors that interact with proteoglycans (PGs) in the extracellular matrix (ECM). Bone morphogenetic proteins (BMPs) are multifunctional growth factors that play critical roles in cartilage maturation and bone formation. BMP signals are transduced from plasma membrane receptors to the nucleus through both canonical Smad and noncanonical p38 mitogen-activated protein kinase (MAPK) pathways. BMP signalling is modulated by a variety of endogenous and exogenous molecular mechanisms at different spatiotemporal levels and in both positive and negative manners. As an endogenous example, BMPs undergo extracellular regulation by PGs, which generally regulate the efficiency of ligand-receptor binding. BMP signalling can also be exogenously perturbed by a group of small molecule antagonists, such as dorsomorphin and its derivatives, that selectively bind to and inhibit the intracellular kinase domain of BMP type I receptors. In this review, we present a current understanding of BMPs and PGs functions in cartilage maturation and osteoblast differentiation, highlighting BMP–PG interactions. We also discuss the identification of highly selective small-molecule BMP receptor type I inhibitors. This review aims to shed light on the importance of BMP signalling and PGs in cartilage maturation and bone formation.","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47853505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Lizard Blastema Organoid Model Recapitulates Regenerated Tail Chondrogenesis 蜥蜴类器官母细胞模型再生尾部软骨形成
IF 2.7
Journal of Developmental Biology Pub Date : 2022-02-10 DOI: 10.3390/jdb10010012
Ariel C Vonk, Sarah C Hasel-Kolossa, Gabriela A Lopez, Megan L. Hudnall, Darian J Gamble, Thomas P. Lozito
{"title":"Lizard Blastema Organoid Model Recapitulates Regenerated Tail Chondrogenesis","authors":"Ariel C Vonk, Sarah C Hasel-Kolossa, Gabriela A Lopez, Megan L. Hudnall, Darian J Gamble, Thomas P. Lozito","doi":"10.3390/jdb10010012","DOIUrl":"https://doi.org/10.3390/jdb10010012","url":null,"abstract":"(1) Background: Lizard tail regeneration provides a unique model of blastema-based tissue regeneration for large-scale appendage replacement in amniotes. Green anole lizard (Anolis carolinensis) blastemas contain fibroblastic connective tissue cells (FCTCs), which respond to hedgehog signaling to create cartilage in vivo. However, an in vitro model of the blastema has not previously been achieved in culture. (2) Methods: By testing two adapted tissue dissociation protocols and two optimized media formulations, lizard tail FCTCs were pelleted in vitro and grown in a micromass blastema organoid culture. Pellets were analyzed by histology and in situ hybridization for FCTC and cartilage markers alongside staged original and regenerating lizard tails. (3) Results: Using an optimized serum-free media and a trypsin- and collagenase II-based dissociation protocol, micromass blastema organoids were formed. Organoid cultures expressed FCTC marker CDH11 and produced cartilage in response to hedgehog signaling in vitro, mimicking in vivo blastema and tail regeneration. (4) Conclusions: Lizard tail blastema regeneration can be modeled in vitro using micromass organoid culture, recapitulating in vivo FCTC marker expression patterns and chondrogenic potential.","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46232219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Genetic and Molecular Determinants of Lymphatic Malformations: Potential Targets for Therapy 淋巴畸形的遗传和分子决定因素:治疗的潜在目标
IF 2.7
Journal of Developmental Biology Pub Date : 2022-02-08 DOI: 10.3390/jdb10010011
Su Yeon Lee, E. Loll, A. Hassan, Mingyu Cheng, Aijun Wang, D. Farmer
{"title":"Genetic and Molecular Determinants of Lymphatic Malformations: Potential Targets for Therapy","authors":"Su Yeon Lee, E. Loll, A. Hassan, Mingyu Cheng, Aijun Wang, D. Farmer","doi":"10.3390/jdb10010011","DOIUrl":"https://doi.org/10.3390/jdb10010011","url":null,"abstract":"Lymphatic malformations are fluid-filled congenital defects of lymphatic channels occurring in 1 in 6000 to 16,000 patients. There are various types, and they often exist in conjunction with other congenital anomalies and vascular malformations. Great strides have been made in understanding these malformations in recent years. This review summarize known molecular and embryological precursors for lymphangiogenesis. Gene mutations and dysregulations implicated in pathogenesis of lymphatic malformations are discussed. Finally, we touch on current and developing therapies with special attention on targeted biotherapeutics.","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44366028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Actin Filament in the First Cell Cycle Contributes to the Determination of the Anteroposterior Axis in Ascidian Development 第一个细胞周期中的肌动蛋白丝有助于决定腹水鞘发育的前后轴
IF 2.7
Journal of Developmental Biology Pub Date : 2022-02-04 DOI: 10.3390/jdb10010010
Toshiyuki Goto, Shuhei Torii, Aoi Kondo, Kazumasa Kanda, Junji Kawakami, Y. Kataoka, T. Nishikata
{"title":"Actin Filament in the First Cell Cycle Contributes to the Determination of the Anteroposterior Axis in Ascidian Development","authors":"Toshiyuki Goto, Shuhei Torii, Aoi Kondo, Kazumasa Kanda, Junji Kawakami, Y. Kataoka, T. Nishikata","doi":"10.3390/jdb10010010","DOIUrl":"https://doi.org/10.3390/jdb10010010","url":null,"abstract":"In many animal species, the body axis is determined by the relocalization of maternal determinants, organelles, or unique cell populations in a cytoskeleton-dependent manner. In the ascidian first cell cycle, the myoplasm, including mitochondria, endoplasmic reticulum (ER), and maternal mRNAs, move to the future posterior side concomitantly (called ooplasmic segregation or cytoplasmic and cortical reorganization). This translocation consists of first and second phases depending on the actin and microtubule, respectively. However, the transition from first to second phase, that is, translocation of myoplasmic components from microfilaments to microtubules, has been poorly investigated. In this study, we analyzed the relationship between these cytoskeletons and myoplasmic components during the first cell cycle and their role in morphogenesis by inhibitor experiments. Owing to our improved visualization techniques, there was unexpected F-actin accumulation at the vegetal pole during this transition period. When this F-actin was depolymerized, the microtubule structure was strongly affected, the myoplasmic components, including maternal mRNA, were mislocalized, and the anteroposterior axis formation was disordered. These results suggested the importance of F-actin during the first cell cycle and the existence of interactions between microfilaments and microtubules, implying the enigmatic mechanism of ooplasmic segregation. Solving this mystery leads us to an improved understanding of ascidian early development.","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44081351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信