{"title":"Connectivity of the Claustrum–Endopiriform Complex with the Presubiculum and Hippocampal Regions in the Common Marmoset (Callithrix jacchus)","authors":"Yoshiko Honda, Keiko Moriya-Ito, Tetsuya Shimokawa, Yasushi Kobayashi","doi":"10.1002/cne.25666","DOIUrl":"10.1002/cne.25666","url":null,"abstract":"<p>We have investigated the hippocampal connectivity of the marmoset presubiculum (PreS) and reported that major connections of PreS in the rat were conserved in the marmoset. Moreover, our results indicated the presence of several additional projections that were almost absent in the rat brain, but abundant in the marmoset, such as direct projections from CA1 to PreS. However, little is known about the connectivity between the frontal brain regions and PreS or hippocampal formation. Therefore, we investigated the distribution of cells of the origins and terminals of the presubicular and hippocampal projections in the marmoset frontal brain regions using the retrograde and anterograde tracer cholera toxin B subunit. In cases of tracer injections into all layers of PreS, many neurons and terminals were labeled in the claustrum–endopiriform (Cl–En) complex almost entirely along the rostrocaudal axis. Even in cases where the injection site involved the superficial (not deep) layers of PreS, labeled neurons and terminals were distributed over a wide rostrocaudal range of the Cl–En complex, but their number and density were significantly lower than the whole-layer injection cases. In cases where the injection site was confined to the hippocampal formation, labeled cells and terminals were localized at a restricted portion of the Cl–En complex. Here, we demonstrate for what we believe to be the first time the strong, reciprocal connections of the Cl–En complex with PreS and projections from the Cl–En complex to the hippocampal regions (CA1 and the subiculum) in the marmoset. Our findings indicate that the Cl–En complex may exert a strong influence on the cortical and subcortical outputs from PreS and, in turn, the entire memory circuitry in the marmoset brain.</p>","PeriodicalId":15552,"journal":{"name":"Journal of Comparative Neurology","volume":"532 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cne.25666","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142132888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kate S. Heffernan, Indeara Martinez, Dieter Jaeger, Baljit S. Khakh, Yoland Smith, Adriana Galvan
{"title":"Scaled Complexity of Mammalian Astrocytes: Insights From Mouse and Macaque","authors":"Kate S. Heffernan, Indeara Martinez, Dieter Jaeger, Baljit S. Khakh, Yoland Smith, Adriana Galvan","doi":"10.1002/cne.25665","DOIUrl":"10.1002/cne.25665","url":null,"abstract":"<div>\u0000 \u0000 <p>Astrocytes intricately weave within the neuropil, giving rise to characteristic bushy morphologies. Pioneering studies suggested that primate astrocytes are more complex due to increased branch numbers and territory size compared to rodent counterparts. However, there has been no comprehensive comparison of astrocyte morphology across species. We employed several techniques to investigate astrocyte morphology and directly compared them between mice and rhesus macaques in cortical and subcortical regions. We assessed astrocyte density, territory size, branching structure, fine morphological complexity, and interactions with neuronal synapses using a combination of techniques, including immunohistochemistry, adeno-associated virus–mediated transduction of astrocytes, diOlistics, confocal imaging, and electron microscopy. We found significant morphological similarities between primate and rodent astrocytes, suggesting that astrocyte structure has scaled with evolution. Our findings show that primate astrocytes are larger and more numerous than those in rodents but contest the view that primate astrocytes are morphologically far more complex.</p>\u0000 </div>","PeriodicalId":15552,"journal":{"name":"Journal of Comparative Neurology","volume":"532 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142132889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Violeta Pellicer-Morata, Lie Wang, Amy de Jongh Curry, Jack W. Tsao, Robert S. Waters
{"title":"Sources of Rapid and Delayed New Lower Jaw Input in the Forepaw Barrel Subfield (FBS) in Rat Primary Somatosensory Cortex (SI) Following Forelimb Deafferentation","authors":"Violeta Pellicer-Morata, Lie Wang, Amy de Jongh Curry, Jack W. Tsao, Robert S. Waters","doi":"10.1002/cne.25664","DOIUrl":"10.1002/cne.25664","url":null,"abstract":"<div>\u0000 \u0000 <p>Previously, we reported an immediate emergence of new lower jaw input to the anterior forepaw barrel subfield (FBS) in primary somatosensory cortex (SI) following forelimb deafferentation. However, a delay of 7 weeks or more post-amputation results in the presence of this new input to both anterior and posterior FBS. The immediate change suggests pre-existing latent lower jaw input in the FBS, whereas the delayed alteration implies the involvement of alternative sources. One possible source for immediate lower jaw responses is the neighboring lower jaw barrel subfield (LJBSF). We used anatomical tracers to investigate the possible projection of LJBSF to the FBS in normal and forelimb-amputated rats. Our findings are as follows: (1) anterograde tracer injection into LJBSF in normal and amputated rats labeled fibers and terminals exclusively in the anterior FBS; (2) retrograde tracer injection in the anterior FBS in normal and forelimb-amputated rats, heavily labeled cell bodies predominantly in the posterior LJBSF, with fewer in the anterior LJBSF; (3) retrograde tracer injection in the posterior FBS in normal and forelimb-amputated rats, sparsely labeled cell bodies in the posterior LJBSF; (4) retrograde tracer injection in anterior and posterior FBS in normal and forelimb-amputated rats, labeled cells exclusively in ventral posterior lateral (VPL) nucleus and posterior thalamus (PO); (5) retrograde tracer injection in LJBSF-labeled cell bodies exclusively in ventral posterior medial thalamic nucleus and PO. These findings suggest that LJBSF facilitates rapid lower jaw reorganization in the anterior FBS, whereas VPL and/or other subcortical sites provide a likely substrate for delayed reorganization observed in the posterior FBS.</p>\u0000 </div>","PeriodicalId":15552,"journal":{"name":"Journal of Comparative Neurology","volume":"532 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142132890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenyao Wang, Chengdong Wang, Yan Nan, Yuan Zhou, Ronping Wei, Shanshan Ling, Honglin Wu, Linhua Deng, Jie Gao, Qihua He, Xin Huang, Chun Zhang, Desheng Li, Mingliang Pu
{"title":"Cover Image, Volume 532, Issue 8","authors":"Wenyao Wang, Chengdong Wang, Yan Nan, Yuan Zhou, Ronping Wei, Shanshan Ling, Honglin Wu, Linhua Deng, Jie Gao, Qihua He, Xin Huang, Chun Zhang, Desheng Li, Mingliang Pu","doi":"10.1002/cne.25667","DOIUrl":"https://doi.org/10.1002/cne.25667","url":null,"abstract":"<p>The cover image is based on the Article <i>Morphological Characteristics of Retinal Ganglion Cells in the Retinas of Giant Pandas</i> (Ailuropoda melanoleuca) by Wenyao Wang, Chengdong Wang, and Yan Nan et al., https://doi.org/10.1002/cne.25661.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":15552,"journal":{"name":"Journal of Comparative Neurology","volume":"532 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cne.25667","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenyao Wang, Chengdong Wang, Yan Nan, Yuan Zhou, Ronping Wei, Shanshan Ling, Honglin Wu, Linhua Deng, Jie Gao, Qihua He, Xin Huang, Chun Zhang, Desheng Li, Mingliang Pu
{"title":"Morphological Characteristics of Retinal Ganglion Cells in the Retinas of Giant Pandas (Ailuropoda melanoleuca)","authors":"Wenyao Wang, Chengdong Wang, Yan Nan, Yuan Zhou, Ronping Wei, Shanshan Ling, Honglin Wu, Linhua Deng, Jie Gao, Qihua He, Xin Huang, Chun Zhang, Desheng Li, Mingliang Pu","doi":"10.1002/cne.25661","DOIUrl":"10.1002/cne.25661","url":null,"abstract":"<div>\u0000 \u0000 <p>Vision plays a crucial role in the survival of animals, and the visual system has particularly selectively evolved in response to the visual environment, ecological niche, and species habitats in vertebrate species. To date, a horizontal streak of retinal ganglion cell (RGC) distribution pattern is observed across mammal species. Here, we report that the giant panda's vertically oriented visual streak, combined with current evidence of the animal's forward-placed eyes, ocular structure, and retinal neural topographic distribution patterns, presents the emergence of a well-adapted binocular visual system. Our results suggest that the giant panda may use a unique way to processing binocular visual information. Results of mathematical simulation are in favor of this hypothesis. The topographic distribution properties of RGCs reported here could be essential for understanding the visual adaptation and evolution of this living fossil.</p>\u0000 </div>","PeriodicalId":15552,"journal":{"name":"Journal of Comparative Neurology","volume":"532 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Roncoroni Re-Visited: The Neuronal Intranuclear Rodlet Comes of Age","authors":"John Woulfe, David Munoz","doi":"10.1002/cne.25662","DOIUrl":"10.1002/cne.25662","url":null,"abstract":"<div>\u0000 \u0000 <p>Despite myriad technological advances in neuroscience, the nervous system harbors morphological phenomena that continue to defy explanation. First described by the classical microscopists, including Santiago Ramon y Cajal, at the end of the 19th century, the neuronal intranuclear rodlet (INR) has mystified neurohistologists and microscopists for centuries. In this review article, we will provide an overview of the discovery of the INR as well as the subsequent attempts to elucidate its nature and functional significance. We outline our own studies of this structure over the past three decades, focusing on its elusive nature, its interactions with other nuclear organelles, and on disease-related quantitative changes in Alzheimer's disease. We then describe our somewhat serendipitous discovery that these structures are filamentous aggregates of the nucleotide-synthesizing metabolic enzyme inosine monophosphate dehydrogenase. The filamentation of metabolic enzymes to form mesoscale cellular structures called “rods and rings” or “cytoophidia” (Greek for “cellular snakes”) is a recently described phenomenon that remains to be systematically investigated in the nervous system. Thus, this review provides an intriguing historical juxtaposition in neuroscience, inculcating the neuronal INR, once a mere morphological curiosity, into one of the most rapidly evolving fields in contemporary cell biology.</p>\u0000 </div>","PeriodicalId":15552,"journal":{"name":"Journal of Comparative Neurology","volume":"532 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vaishnav Krishnan, Jun Wu, Arindam Ghosh Mazumder, Jessica L. Kamen, Catharina Schirmer, Nandani Adhyapak, John Samuel Bass, Samuel C. Lee, Atul Maheshwari, Gemma Molinaro, Jay R. Gibson, Kimberly M. Huber, Berge A. Minassian
{"title":"Clinicopathologic Dissociation: Robust Lafora Body Accumulation in Malin KO Mice Without Observable Changes in Home-Cage Behavior","authors":"Vaishnav Krishnan, Jun Wu, Arindam Ghosh Mazumder, Jessica L. Kamen, Catharina Schirmer, Nandani Adhyapak, John Samuel Bass, Samuel C. Lee, Atul Maheshwari, Gemma Molinaro, Jay R. Gibson, Kimberly M. Huber, Berge A. Minassian","doi":"10.1002/cne.25660","DOIUrl":"10.1002/cne.25660","url":null,"abstract":"<div>\u0000 \u0000 <p>Lafora disease (LD) is a syndrome of progressive myoclonic epilepsy and cumulative neurocognitive deterioration caused by recessively inherited genetic lesions of EPM2A (laforin) or NHLRC1 (malin). Neuropsychiatric symptomatology in LD is thought to be directly downstream of neuronal and astrocytic polyglucosan aggregates, termed Lafora bodies (LBs), which faithfully accumulate in an age-dependent manner in all mouse models of LD. In this study, we applied home-cage monitoring to examine the extent of neurobehavioral deterioration in a model of malin-deficient LD as a means to identify robust preclinical endpoints that may guide the selection of novel genetic treatments. At 6 weeks, ∼6–7 months, and ∼12 months of age, malin-deficient mice (“KO”) and wild-type (WT) littermates underwent a standardized home-cage behavioral assessment designed to non-obtrusively appraise features of rest/arousal, consumptive behaviors, risk aversion, and voluntary wheel-running. At all timepoints, and over a range of metrics that we report transparently, WT and KO mice were essentially indistinguishable. In contrast, within WT mice compared across the same timepoints, we identified age-related nocturnal hypoactivity, diminished sucrose preference, and reduced wheel-running. Neuropathological examinations in subsets of the same mice revealed expected age-dependent LB accumulation, gliosis, and microglial activation in cortical and subcortical brain regions. At 12 months of age, despite the burden of neocortical LBs, we did not identify spontaneous seizures during an electroencephalographic (EEG) survey, and KO and WT mice exhibited similar spectral EEG features. However, in an in vitro assay of neocortical function, paroxysmal bursts of network activity (UP states) in KO slices were more prolonged at 3 and 6 months of age, but similar to WT at 12 months. KO mice displayed a distinct response to pentylenetetrazole, with a greater incidence of clonic seizures and a more pronounced postictal suppression of movement, feeding, and drinking behavior. Together, these results highlight the clinicopathologic dissociation in a mouse model of LD, where the accrual of LBs may latently modify cortical circuit function and seizure threshold without clinically meaningful changes in home-cage behavior. Our findings allude to a delay between LB accumulation and neurobehavioral decline in LD: one that may provide a window for treatment, and whose precise duration may be difficult to ascertain within the typical lifespan of a laboratory mouse.</p>\u0000 </div>","PeriodicalId":15552,"journal":{"name":"Journal of Comparative Neurology","volume":"532 7","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nuclei and Tracts in the Telencephalon of Crocodiles: Identification and Characterization Using an Organizational Scheme Applicable to Other Reptiles","authors":"Michael B. Pritz","doi":"10.1002/cne.25659","DOIUrl":"10.1002/cne.25659","url":null,"abstract":"<div>\u0000 \u0000 <p>The telencephalon of reptiles has been suggested to be the key to understanding the evolution of the forebrain. Nevertheless, a meaningful framework to organize the telencephalon in any reptile has, with rare exception, yet to be presented. To address this gap in knowledge, the telencephalon was investigated in two species of crocodiles. A variety of morphological stains were used to examine tissue in transverse, horizontal, and sagittal planes of sections. Besides providing a description of individual nuclei, brain parts were organized based on two features. One was related to two fixed, internal structures: the lateral ventricle and the dorsal medullary lamina. The other was the alignment of neurons into either layers, cortex, or not, nucleus. Viewed from this perspective, all structures, with limited exceptions, could be accurately placed within the telencephalon regardless of the plane of section. Furthermore, this framework can be applied to other reptiles. A further extension of this scheme suggests that all structures in the telencephalon could be grouped into one of two categories: pallial or basal.</p>\u0000 </div>","PeriodicalId":15552,"journal":{"name":"Journal of Comparative Neurology","volume":"532 7","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Early Development of the Thalamo-Pallial Stage of the Tectofugal Visual Pathway in the Chicken (Gallus gallus)","authors":"Rosana Reyes-Pinto, María-José Rojas, Juan-Carlos Letelier, Gonzalo J. Marín, Jorge Mpodozis","doi":"10.1002/cne.25657","DOIUrl":"10.1002/cne.25657","url":null,"abstract":"<div>\u0000 \u0000 <p>The tectofugal pathway is a highly conserved visual pathway in all amniotes. In birds and mammals, retinorecipient neurons located in the midbrain roof (optic tectum/superior colliculus) are the source of ascending projections to thalamic relays (nucleus rotundus/caudal pulvinar), which in turn project to specific pallial regions (visual dorsal ventricular ridge [vDVR]/temporal cortex) organized according to a columnar recurrent arrangement of interlaminar circuits. Whether or to which extent these striking hodological correspondences arise from comparable developmental processes is at present an open question, mainly due to the scarcity of data about the ontogeny of the avian tectofugal system. Most of the previous developmental studies of this system in birds have focused on the establishment of the retino-tecto-thalamic connectivity, overlooking the development of the thalamo-pallial-intrapallial circuit. In this work, we studied the latter in chicken embryos by means of immunohistochemical assays and precise ex vivo crystalline injections of biocytin and DiI. We found that the layered organization of the vDVR as well as the system of homotopic reciprocal connections between vDVR layers were present as early as E8. A highly organized thalamo-vDVR projection was also present at this stage. Our immunohistochemical assays suggest that both systems of projections emerge simultaneously even earlier. Combined with previous findings, these results reveal that, in striking contrast with mammals, the peripheral and central stages of the avian tectofugal pathway develop along different timelines, with a tecto-thalamo-intrapallial organization arising before and possibly independently of the retino-isthmo-tectal circuit.</p>\u0000 </div>","PeriodicalId":15552,"journal":{"name":"Journal of Comparative Neurology","volume":"532 7","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141579875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sergei Karnup, Mamoru Hashimoto, Kang Jun Cho, Jonathan Beckel, William de Groat, Naoki Yoshimura
{"title":"Sexual Dimorphism of Spinal Neural Circuits Controlling the Mouse External Urethral Sphincter With and Without Spinal Cord Injury","authors":"Sergei Karnup, Mamoru Hashimoto, Kang Jun Cho, Jonathan Beckel, William de Groat, Naoki Yoshimura","doi":"10.1002/cne.25658","DOIUrl":"10.1002/cne.25658","url":null,"abstract":"<p>Spinal cord injury (SCI) disrupts coordination between the bladder and the external urinary sphincter (EUS), leading to transient or permanent voiding impairment, which is more severe in males. Male versus female differences in spinal circuits related to the EUS as well as post-SCI rewiring are essential for understanding of sex-/gender-specific impairments and possible recovery mechanisms. To quantitatively assess differences between EUS circuits in males versus females and in spinal intact (SI) versus SCI animals, we retrogradely traced and counted EUS-related neurons. In transgenic ChAT-GFP mice, motoneurons (MNs), interneurons (INs), and propriospinal neurons (PPNs) were retrogradely trans-synaptically traced with PRV614-red fluorescent protein (RFP) injected into EUS. EUS-MNs in dorsolateral nucleus (DLN) were separated from other GFP<sup>+</sup> MNs by tracing them with FluoroGold (FG). We found two morphologically distinct cell types in DLN: FG<sup>+</sup> spindle-shaped bipolar (SB-MNs) and FG<sup>−</sup> rounded multipolar (RM-MNs) cholinergic cells. Number of MNs of both types in males was twice as large as in females. SCI caused a partial loss of MNs in all spinal nuclei. After SCI, males showed a fourfold rise in the number of RFP-labeled cells in retro-DLN (RDLN) innervating hind limbs. This suggests (a) an existence of direct synaptic interactions between spinal nuclei and (b) a post-SCI increase of non-specific inputs to EUS-MNs from other motor nuclei. Number of INs and PPNs deferred between males and females: In SI males, the numbers of INs and PPNs were ∼10 times larger than in SI females. SCI caused a twofold decrease of INs and PPNs in males but not in females.</p>","PeriodicalId":15552,"journal":{"name":"Journal of Comparative Neurology","volume":"532 7","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cne.25658","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141579876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}