Sergei Karnup, Mamoru Hashimoto, Kang Jun Cho, Jonathan Beckel, William de Groat, Naoki Yoshimura
{"title":"Sexual Dimorphism of Spinal Neural Circuits Controlling the Mouse External Urethral Sphincter With and Without Spinal Cord Injury","authors":"Sergei Karnup, Mamoru Hashimoto, Kang Jun Cho, Jonathan Beckel, William de Groat, Naoki Yoshimura","doi":"10.1002/cne.25658","DOIUrl":null,"url":null,"abstract":"<p>Spinal cord injury (SCI) disrupts coordination between the bladder and the external urinary sphincter (EUS), leading to transient or permanent voiding impairment, which is more severe in males. Male versus female differences in spinal circuits related to the EUS as well as post-SCI rewiring are essential for understanding of sex-/gender-specific impairments and possible recovery mechanisms. To quantitatively assess differences between EUS circuits in males versus females and in spinal intact (SI) versus SCI animals, we retrogradely traced and counted EUS-related neurons. In transgenic ChAT-GFP mice, motoneurons (MNs), interneurons (INs), and propriospinal neurons (PPNs) were retrogradely trans-synaptically traced with PRV614-red fluorescent protein (RFP) injected into EUS. EUS-MNs in dorsolateral nucleus (DLN) were separated from other GFP<sup>+</sup> MNs by tracing them with FluoroGold (FG). We found two morphologically distinct cell types in DLN: FG<sup>+</sup> spindle-shaped bipolar (SB-MNs) and FG<sup>−</sup> rounded multipolar (RM-MNs) cholinergic cells. Number of MNs of both types in males was twice as large as in females. SCI caused a partial loss of MNs in all spinal nuclei. After SCI, males showed a fourfold rise in the number of RFP-labeled cells in retro-DLN (RDLN) innervating hind limbs. This suggests (a) an existence of direct synaptic interactions between spinal nuclei and (b) a post-SCI increase of non-specific inputs to EUS-MNs from other motor nuclei. Number of INs and PPNs deferred between males and females: In SI males, the numbers of INs and PPNs were ∼10 times larger than in SI females. SCI caused a twofold decrease of INs and PPNs in males but not in females.</p>","PeriodicalId":15552,"journal":{"name":"Journal of Comparative Neurology","volume":"532 7","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cne.25658","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Neurology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cne.25658","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Spinal cord injury (SCI) disrupts coordination between the bladder and the external urinary sphincter (EUS), leading to transient or permanent voiding impairment, which is more severe in males. Male versus female differences in spinal circuits related to the EUS as well as post-SCI rewiring are essential for understanding of sex-/gender-specific impairments and possible recovery mechanisms. To quantitatively assess differences between EUS circuits in males versus females and in spinal intact (SI) versus SCI animals, we retrogradely traced and counted EUS-related neurons. In transgenic ChAT-GFP mice, motoneurons (MNs), interneurons (INs), and propriospinal neurons (PPNs) were retrogradely trans-synaptically traced with PRV614-red fluorescent protein (RFP) injected into EUS. EUS-MNs in dorsolateral nucleus (DLN) were separated from other GFP+ MNs by tracing them with FluoroGold (FG). We found two morphologically distinct cell types in DLN: FG+ spindle-shaped bipolar (SB-MNs) and FG− rounded multipolar (RM-MNs) cholinergic cells. Number of MNs of both types in males was twice as large as in females. SCI caused a partial loss of MNs in all spinal nuclei. After SCI, males showed a fourfold rise in the number of RFP-labeled cells in retro-DLN (RDLN) innervating hind limbs. This suggests (a) an existence of direct synaptic interactions between spinal nuclei and (b) a post-SCI increase of non-specific inputs to EUS-MNs from other motor nuclei. Number of INs and PPNs deferred between males and females: In SI males, the numbers of INs and PPNs were ∼10 times larger than in SI females. SCI caused a twofold decrease of INs and PPNs in males but not in females.
期刊介绍:
Established in 1891, JCN is the oldest continually published basic neuroscience journal. Historically, as the name suggests, the journal focused on a comparison among species to uncover the intricacies of how the brain functions. In modern times, this research is called systems neuroscience where animal models are used to mimic core cognitive processes with the ultimate goal of understanding neural circuits and connections that give rise to behavioral patterns and different neural states.
Research published in JCN covers all species from invertebrates to humans, and the reports inform the readers about the function and organization of nervous systems in species with an emphasis on the way that species adaptations inform about the function or organization of the nervous systems, rather than on their evolution per se.
JCN publishes primary research articles and critical commentaries and review-type articles offering expert insight in to cutting edge research in the field of systems neuroscience; a complete list of contribution types is given in the Author Guidelines. For primary research contributions, only full-length investigative reports are desired; the journal does not accept short communications.