{"title":"Tapping existing LCC-HVdc systems with Voltage Source Converters","authors":"D. Suriyaarachchi, C. Karawita, M. Mohaddes","doi":"10.1109/PESGM.2016.7741731","DOIUrl":"https://doi.org/10.1109/PESGM.2016.7741731","url":null,"abstract":"This paper presents the application of a Full-bridge modular multi-level converter (FB-MMC) to tap an existing LCC-HVdc system. During faults, the dc voltage of the FB-MMC is controlled to reduce the fault current instead of blocking the converters. Electromagnetic Transient Simulations performed with PSCAD has been used to demonstrate the performance of the proposed system. Control strategies have been proposed in case of ac and dc faults at the three terminals. The results presented in this paper clearly indicate the benefits of using a FB-MMC with a controlled fault clearing strategy to tap an existing LCC-HVdc system.","PeriodicalId":155315,"journal":{"name":"2016 IEEE Power and Energy Society General Meeting (PESGM)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123550442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Implementation of the frequency-partitioning fitting method for linear equivalent identification from frequency response data","authors":"T. Noda","doi":"10.1109/PESGM.2016.7741729","DOIUrl":"https://doi.org/10.1109/PESGM.2016.7741729","url":null,"abstract":"It is often the case that the frequency response data of a network or a system is available and one wants to identify a linear equivalent from the frequency response data for time-domain simulations and other purposes. To this end, a variety of methods have been proposed, and the vector fitting (VF) method and the frequency-partitioning fitting (FpF) method are often used for electromagnetic transient (EMT) simulations of power systems. The main applications are frequency-dependent transmission-line modeling and frequency-dependent network modeling. This paper presents illustrative MATLAB code of the FpF method. Although the mathematical descriptions of the algorithms used in the FpF method have been fully presented in the literature, the illustrative code is still useful and necessary to understand the details of their implementation. It is verified that the code shown in this paper is fully functional and it can be used as a functioning software package.","PeriodicalId":155315,"journal":{"name":"2016 IEEE Power and Energy Society General Meeting (PESGM)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115343345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Z. Taylor, H. Akhavan-Hejazi, Ed Cortez, L. Alvarez, S. Ula, M. Barth, Hamed Mohsenian-Rad
{"title":"Battery-assisted distribution feeder peak load reduction: Stochastic optimization and utility-scale implementation","authors":"Z. Taylor, H. Akhavan-Hejazi, Ed Cortez, L. Alvarez, S. Ula, M. Barth, Hamed Mohsenian-Rad","doi":"10.1109/PESGM.2016.7741848","DOIUrl":"https://doi.org/10.1109/PESGM.2016.7741848","url":null,"abstract":"In this paper, a stochastic optimization framework is developed to reduce congestion on distribution feeders using batteries, under offline and online design paradigms. Our design is customized, implemented, tested, and analyzed in a real-world testbed that was built based on a university-utility collaboration in California. Our proposed method seeks to optimize peak load at the feeder while taking into account feeder load uncertainty as well as hardware, utility, and customer constraints. We present both experimental and numerical results. Insightful observations, design trade-offs, and lessons learned are discussed.","PeriodicalId":155315,"journal":{"name":"2016 IEEE Power and Energy Society General Meeting (PESGM)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116058968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Coordinated control of PV solar system as STATCOM (PV-STATCOM) and Power System Stabilizers for power oscillation damping","authors":"Hesamaldin Maleki, R. Varma","doi":"10.1109/PESGM.2016.7741813","DOIUrl":"https://doi.org/10.1109/PESGM.2016.7741813","url":null,"abstract":"This paper presents a novel control of PV solar farm as a STATCOM (PV-STATCOM) coordinated with Power System Stabilizers (PSSs) for damping of electromechanical oscillations in a power system. A two-area power system with a 150 MW PV solar plant connected at the midpoint of the tie line is simulated in PSCAD/EMTDC software. During contingencies, the capacity of the PV inverter remaining after real power generation is utilized for dynamic reactive power exchange to accomplish power oscillation damping. The advantage of master-slave feature in PSCAD/EMTDC software is utilized for performing the optimization and controller coordination. It is demonstrated that a coordinated control of PV-STATCOM and PSS can effectively enhance the damping of power oscillations, leading to higher power transfers in lines. This novel control of PV solar farms will result in a more optimal utilization of the expensive PV system asset for grid stabilization and enhancement of power transmission capability.","PeriodicalId":155315,"journal":{"name":"2016 IEEE Power and Energy Society General Meeting (PESGM)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116439987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modal-based voltage stability analysis of low frequency AC transmission systems","authors":"T. Ngo, S. Santoso","doi":"10.1109/PESGM.2016.7741422","DOIUrl":"https://doi.org/10.1109/PESGM.2016.7741422","url":null,"abstract":"The low frequency AC (LFAC) transmission, in which a power system is operated at a low frequency, i.e., below 50/60 Hz, is superior to the conventional 60 Hz system in terms of power transfer capability. In addition, due to low operating frequency, the line reactance is reduced and thus voltage drops along the line are decreased. The low frequency transmission thus offers a higher voltage profile for a power system. In other words, an LFAC system can be more voltage stable in comparison to the conventional 60-Hz system. This paper intends to focus on the voltage stability of an LFAC system. The theoretical foundations of a two-bus system are first discussed based on eigenvalue. A modified stability index calculation is also introduced for low frequency transmission to estimate the system stability accurately. The simulation results from a practical system verify that the LFAC transmission has great benefits over the 60 Hz system in terms of power transfer capability and voltage stability.","PeriodicalId":155315,"journal":{"name":"2016 IEEE Power and Energy Society General Meeting (PESGM)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122424558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Control strategy for utility interactive hybrid PV Hydrogen System","authors":"V. S. Tejwani, B. Suthar","doi":"10.1109/PESGM.2016.7741666","DOIUrl":"https://doi.org/10.1109/PESGM.2016.7741666","url":null,"abstract":"The combination of Photovoltaic (PV) with a hydrogen storage system as backup (HPVHS - Hybrid PV Hydrogen System) has been proposed in this paper. The Proposed system will cope up with the problems of grid connected PV System (GPVS) which is being stochastic in nature. The control strategy has been proposed for direct and indirect grid voltage regulation utilizing proposed HPVHS as static synchronous compensator (STATCOM). It has been shown that the HPVHS based on this control strategy would improve the dynamic behavior of the GPVS response to disturbance, voltage dips and in a day ahead market where decisions on the power supply should be taken at least 24 hours in advance. MATLAB/SIMULINK based simulation is done and results are provided to show the effectiveness of the proposed control strategy.","PeriodicalId":155315,"journal":{"name":"2016 IEEE Power and Energy Society General Meeting (PESGM)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122476591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Automatic distribution network reconfiguration: An event-driven approach","authors":"F. Ding, Huaiguang Jiang, Jin Tan","doi":"10.1109/PESGM.2016.7741577","DOIUrl":"https://doi.org/10.1109/PESGM.2016.7741577","url":null,"abstract":"This paper proposes an event-driven approach for reconfiguring distribution systems automatically. Specifically, an optimal synchrophasor sensor placement (OSSP) is used to reduce the number of synchrophasor sensors while keeping the whole system observable. Then, a wavelet-based event detection and location approach is used to detect and locate the event, which performs as a trigger for network reconfiguration. With the detected information, the system is then reconfigured using the hierarchical decentralized approach to seek for the new optimal topology. In this manner, whenever an event happens the distribution network can be reconfigured automatically based on the real-time information that is observable and detectable.","PeriodicalId":155315,"journal":{"name":"2016 IEEE Power and Energy Society General Meeting (PESGM)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114463373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Power sharing control strategy for a no-storage hydrokinetic-diesel system in an isolated AC mini-grid","authors":"M. Ashourianjozdani, L. Lopes, P. Pillay","doi":"10.1109/PESGM.2016.7741177","DOIUrl":"https://doi.org/10.1109/PESGM.2016.7741177","url":null,"abstract":"The operation of diesel engine generator sets (gensets) with light loading leads to deterioration in the engine performance and efficiency. This problem is intensified in no-storage hydrokinetic-diesel systems since the genset is usually oversized to make-up for the potential shortage of renewable energy. In this paper, a new power sharing control strategy has been developed which minimizes this issue using a hydrokinetic energy conversion system (HKECS) that employs a diode AC-DC converter and voltage source inverter. The genset works with a frequency vs. power droop control. The HKECS is controlled with maximum power point tracking unless the grid frequency rises above a limit that indicates the underloading of the genset. At this point, a controlled DC load is activated so as to decrease the power injected by the HKECS thus regulating the grid frequency at this operating point. The proposed strategy is verified with a set-up with rotating machines and power electronic converters controlled via a dSPACE® system. The dynamic and steady-state operation of the system including power balancing, voltage and frequency control are presented.","PeriodicalId":155315,"journal":{"name":"2016 IEEE Power and Energy Society General Meeting (PESGM)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129507093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdelrahman A. Karrar, Elamin Mohamed, M. Ahmed, Wafa Elballa, M. Kamel, M. Bowman, Tamatha A. Womack, Preston Cooper, A. Eltom
{"title":"Influence of zero sequence impedances of station auxiliary transformers on equipment performance under open-phase faults","authors":"Abdelrahman A. Karrar, Elamin Mohamed, M. Ahmed, Wafa Elballa, M. Kamel, M. Bowman, Tamatha A. Womack, Preston Cooper, A. Eltom","doi":"10.1109/PESGM.2016.7742018","DOIUrl":"https://doi.org/10.1109/PESGM.2016.7742018","url":null,"abstract":"Primary open-phase faults on station auxiliary transformers (SATs) are characterized by the presence of voltage unbalance at the auxiliary equipment level that could lead to protective device tripping, increased motor acceleration times, overheating or failure to start critical safety loads, particularly in the nuclear power industry. The transformer primary to ground zero sequence impedance has a profound impact on the voltage balance on the secondary (equipment) level but its effects not been fully analyzed in the context of nuclear power plant operation. This study investigates the influence of zero sequence impedance to ground as seen from the transformer primary terminals during an open-phase condition on the performance of nuclear plant auxiliary equipment, in particular the effect on large motor starting and running performance. Dynamic models for the motors were employed and adapted to the sequence network representing the overall system. The resulting system was simulated for a number of open-phase conditions using transformer characteristics representative of the SATs encountered in the nuclear power industry. It was revealed that a lower value of this impedance has a beneficial effect on motor acceleration time and voltage balance for both starting and steady state conditions. The influence of neighboring transformers with a path to ground was also investigated and found to serve towards further improvement of performance.","PeriodicalId":155315,"journal":{"name":"2016 IEEE Power and Energy Society General Meeting (PESGM)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129466659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A comparative study of distribution system parameter estimation methods","authors":"Yannan Sun, T. Williams, S. Gourisetti","doi":"10.1109/PESGM.2016.7741096","DOIUrl":"https://doi.org/10.1109/PESGM.2016.7741096","url":null,"abstract":"In this paper, we compare two parameter estimation methods for distribution systems: 1) residual sensitivity analysis and 2) state-vector augmentation with a Kalman filter. These two methods were originally proposed for transmission systems, and are still the most commonly used methods for parameter estimation. Distribution systems have much lower measurement redundancy than transmission systems; therefore, estimating parameters is significantly more difficult. To increase the robustness of parameter estimation, the two methods are applied with combined measurement snapshots (measurement sets taken at different points in time) so that the redundancy for computing the parameter values is increased. The advantages and disadvantages of both methods are discussed. The results of this paper show that state-vector augmentation with a Kalman filter is a better approach for parameter estimation in distribution systems. Simulation studies are done on a modified version of IEEE 13-Node Test Feeder with varying levels of measurement noise and non-zero error in the other system model parameters.","PeriodicalId":155315,"journal":{"name":"2016 IEEE Power and Energy Society General Meeting (PESGM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129658686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}