A comparative study of distribution system parameter estimation methods

Yannan Sun, T. Williams, S. Gourisetti
{"title":"A comparative study of distribution system parameter estimation methods","authors":"Yannan Sun, T. Williams, S. Gourisetti","doi":"10.1109/PESGM.2016.7741096","DOIUrl":null,"url":null,"abstract":"In this paper, we compare two parameter estimation methods for distribution systems: 1) residual sensitivity analysis and 2) state-vector augmentation with a Kalman filter. These two methods were originally proposed for transmission systems, and are still the most commonly used methods for parameter estimation. Distribution systems have much lower measurement redundancy than transmission systems; therefore, estimating parameters is significantly more difficult. To increase the robustness of parameter estimation, the two methods are applied with combined measurement snapshots (measurement sets taken at different points in time) so that the redundancy for computing the parameter values is increased. The advantages and disadvantages of both methods are discussed. The results of this paper show that state-vector augmentation with a Kalman filter is a better approach for parameter estimation in distribution systems. Simulation studies are done on a modified version of IEEE 13-Node Test Feeder with varying levels of measurement noise and non-zero error in the other system model parameters.","PeriodicalId":155315,"journal":{"name":"2016 IEEE Power and Energy Society General Meeting (PESGM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Power and Energy Society General Meeting (PESGM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM.2016.7741096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we compare two parameter estimation methods for distribution systems: 1) residual sensitivity analysis and 2) state-vector augmentation with a Kalman filter. These two methods were originally proposed for transmission systems, and are still the most commonly used methods for parameter estimation. Distribution systems have much lower measurement redundancy than transmission systems; therefore, estimating parameters is significantly more difficult. To increase the robustness of parameter estimation, the two methods are applied with combined measurement snapshots (measurement sets taken at different points in time) so that the redundancy for computing the parameter values is increased. The advantages and disadvantages of both methods are discussed. The results of this paper show that state-vector augmentation with a Kalman filter is a better approach for parameter estimation in distribution systems. Simulation studies are done on a modified version of IEEE 13-Node Test Feeder with varying levels of measurement noise and non-zero error in the other system model parameters.
配电网参数估计方法的比较研究
本文比较了配电系统参数估计的两种方法:1)剩余灵敏度分析和2)卡尔曼滤波状态向量增强。这两种方法最初是针对传输系统提出的,并且仍然是最常用的参数估计方法。配电系统的测量冗余度远低于输电系统;因此,估计参数明显更加困难。为了提高参数估计的鲁棒性,将两种方法应用于组合测量快照(不同时间点的测量集),从而增加了计算参数值的冗余度。讨论了两种方法的优缺点。结果表明,用卡尔曼滤波进行状态向量增强是一种较好的配电系统参数估计方法。在改进的IEEE 13节点馈线器上进行了仿真研究,该馈线器具有不同程度的测量噪声和其他系统模型参数的非零误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信