{"title":"公用事业交互混合光伏氢能系统控制策略","authors":"V. S. Tejwani, B. Suthar","doi":"10.1109/PESGM.2016.7741666","DOIUrl":null,"url":null,"abstract":"The combination of Photovoltaic (PV) with a hydrogen storage system as backup (HPVHS - Hybrid PV Hydrogen System) has been proposed in this paper. The Proposed system will cope up with the problems of grid connected PV System (GPVS) which is being stochastic in nature. The control strategy has been proposed for direct and indirect grid voltage regulation utilizing proposed HPVHS as static synchronous compensator (STATCOM). It has been shown that the HPVHS based on this control strategy would improve the dynamic behavior of the GPVS response to disturbance, voltage dips and in a day ahead market where decisions on the power supply should be taken at least 24 hours in advance. MATLAB/SIMULINK based simulation is done and results are provided to show the effectiveness of the proposed control strategy.","PeriodicalId":155315,"journal":{"name":"2016 IEEE Power and Energy Society General Meeting (PESGM)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Control strategy for utility interactive hybrid PV Hydrogen System\",\"authors\":\"V. S. Tejwani, B. Suthar\",\"doi\":\"10.1109/PESGM.2016.7741666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The combination of Photovoltaic (PV) with a hydrogen storage system as backup (HPVHS - Hybrid PV Hydrogen System) has been proposed in this paper. The Proposed system will cope up with the problems of grid connected PV System (GPVS) which is being stochastic in nature. The control strategy has been proposed for direct and indirect grid voltage regulation utilizing proposed HPVHS as static synchronous compensator (STATCOM). It has been shown that the HPVHS based on this control strategy would improve the dynamic behavior of the GPVS response to disturbance, voltage dips and in a day ahead market where decisions on the power supply should be taken at least 24 hours in advance. MATLAB/SIMULINK based simulation is done and results are provided to show the effectiveness of the proposed control strategy.\",\"PeriodicalId\":155315,\"journal\":{\"name\":\"2016 IEEE Power and Energy Society General Meeting (PESGM)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Power and Energy Society General Meeting (PESGM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESGM.2016.7741666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Power and Energy Society General Meeting (PESGM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM.2016.7741666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Control strategy for utility interactive hybrid PV Hydrogen System
The combination of Photovoltaic (PV) with a hydrogen storage system as backup (HPVHS - Hybrid PV Hydrogen System) has been proposed in this paper. The Proposed system will cope up with the problems of grid connected PV System (GPVS) which is being stochastic in nature. The control strategy has been proposed for direct and indirect grid voltage regulation utilizing proposed HPVHS as static synchronous compensator (STATCOM). It has been shown that the HPVHS based on this control strategy would improve the dynamic behavior of the GPVS response to disturbance, voltage dips and in a day ahead market where decisions on the power supply should be taken at least 24 hours in advance. MATLAB/SIMULINK based simulation is done and results are provided to show the effectiveness of the proposed control strategy.