{"title":"Microplastics in a small river: Occurrence and influencing factors along the river Oker, Northern Germany","authors":"Lina Büngener , Sarah-Maria Schäffer , Anja Schwarz , Antje Schwalb","doi":"10.1016/j.jconhyd.2024.104366","DOIUrl":"10.1016/j.jconhyd.2024.104366","url":null,"abstract":"<div><p>Much attention regarding the environmental pollution by plastics had focused on the Oceans. More recently, contamination of freshwater ecosystems has been addressed but information from smaller rivers in moderately populated catchments is still comparatively scarce. This study explored the microplastic (MP) occurrence in the small regional river Oker, Northern Germany (catchment area 1822 km<sup>2</sup>, population of ca. 500,000, discharge approx. 12 m<sup>3</sup> s<sup>−1</sup>).</p><p>MPs (fibers and fragments in the size range 0.3–5 mm, identification by microscopy) were found in all 10 in-stream samples collected along the course of the river, ranging between 28 and 134 particles m<sup>−3</sup> with an overall average of 63 particles m<sup>−3</sup>. This MP concentration found in the small river Oker is similar to, or higher than, that reported for larger rivers in similar environments in Central Europe. On average, higher MP concentration was found at urban (71 particles m<sup>−3</sup>) compared to rural sampling sites (51 particles m<sup>−3</sup>). Within the Oker catchment, in-stream MP concentration showed no or low correlation to the catchment-scale factors of catchment size and population. Additional samples taken from three locations directly influenced by discharges of potential MP point sources confirmed wastewater treatment plants of different capacities and an urban rainwater sewer as sources.</p><p>Our results support findings that MP concentrations in small rivers are crucially influenced by local sources, superimposing linear relationships to factors of catchment size and -population. They show that even small rivers draining moderately populated catchments may exhibit comparatively high concentrations of MPs, and thereby represent underestimated pathways of MP in the environment.</p></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169772224000706/pdfft?md5=107e6065c77c75baa27d7fb1438067ea&pid=1-s2.0-S0169772224000706-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140957703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Umair Bin Nisar , Wajeeh ur Rehman , Saher Saleem , Kashif Taufail , Faizan ur Rehman , Muhammad Farooq , Siddique Akhtar Ehsan
{"title":"Assessment of water quality using entropy-weighted quality index, statistical methods and electrical resistivity tomography, Moti village, northern Pakistan","authors":"Umair Bin Nisar , Wajeeh ur Rehman , Saher Saleem , Kashif Taufail , Faizan ur Rehman , Muhammad Farooq , Siddique Akhtar Ehsan","doi":"10.1016/j.jconhyd.2024.104368","DOIUrl":"https://doi.org/10.1016/j.jconhyd.2024.104368","url":null,"abstract":"<div><p>In this study, twenty-two water samples were collected from boreholes (BH), and streams to evaluate drinking water quality, its distribution, identification of contamination sources and apportionment for Moti village, northern Pakistan. An atomic absorption spectrophotometer (AAS) is utilized to determine the level of heavy metals in water such as arsenic (As), zinc (Zn), lead (Pb), copper (Cu), cadmium (Cd), manganese (Mn), and ferrous (Fe). Groundwater chemistry and its quantitative driving factors were further explored using multivariate statistical methods, Principal Component Analysis (PCA) and Positive Matrix Factorization (PMF) models. Finally, a total of eight electrical resistivity tomographs (ERTs) were acquired across i) the highly contaminated streams; ii) the villages far away from contaminated streams; and iii) across the freshwater stream. In the Moti village, the mean levels (mg/l) of heavy metals in water samples were 7.2465 (As), 0.4971 (Zn), 0.5056 (Pb), 0.0422 (Cu), 0.0279 (Cd), 0.1579 (Mn), and 0.9253 (Fe) that exceeded the permissible limit for drinking water (such as 0.010 for As and Pb, 3.0 for Zn, 0.003 for Cd and 0.3 for Fe) established by the World Health Organization (<span>WHO, 2008</span>). The average entropy weighted water quality index (EWQI) of 200, heavy metal pollution index (HPI) of 175, heavy metal evaluation index (HEI) of 1.6 values reveal inferior water quality in the study area. Human health risk assessment, consisting of hazard quotient (HQ) and hazard index (HI), exceeded the risk threshold (>1),indicating prevention of groundwater usage. Results obtained from the PCA and PMF models indicated anthropogenic sources (i.e. industrial and solid waste) responsible for the high concentration of heavy metals in the surface and groundwater. The ERTs imaged the subsurface down to about 40 m depths and show the least resistivity values (<11 Ωm) for subsurface layers that are highly contaminated. However, the ERTs revealed relatively high resistivity values for subsurface layers containing fresh or less contaminated water. Filtering and continuous monitoring of the quality of drinking water in the village are highly recommended.</p></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141078610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amna A. Kotp , Ahmed A. Allam , Asmaa M. Salah , W. Kamal , Doaa Essam , Samar M. Mahgoub , Mahmoud A. Mohamed , Zienab E. Eldin , Haifa E. Alfassam , Hassan A. Rudayni , Abdullah S. Alawam , Fahd A. Nasr , Rehab Mahmoud
{"title":"Cellulose-based CoFe LDH composite as a nano-adsorbent for sulfamethoxazole and cefixime residues: Evaluation of performance, green metrics and cytotoxicity","authors":"Amna A. Kotp , Ahmed A. Allam , Asmaa M. Salah , W. Kamal , Doaa Essam , Samar M. Mahgoub , Mahmoud A. Mohamed , Zienab E. Eldin , Haifa E. Alfassam , Hassan A. Rudayni , Abdullah S. Alawam , Fahd A. Nasr , Rehab Mahmoud","doi":"10.1016/j.jconhyd.2024.104364","DOIUrl":"https://doi.org/10.1016/j.jconhyd.2024.104364","url":null,"abstract":"<div><p>The increase in antibiotic residues poses a serious threat to ecological and aquatic environments, necessitating the development of cost-effective, convenient, and recyclable adsorbents. In our study, we used cellulose-based layered double hydroxide (LDH) as an efficient adsorbent and nanocarrier for both sulfamethoxazole (SMX) and cefixime (CFX) residues due to their biodegradability and biocompatibility. Chemical processes are measured according to green chemistry metrics to identify which features adhere to the principles. A GREEnness Assessment (ESA), Analytical GREEnness Preparation (AGREEprep), and Analytical Eco-Scale Assessments (ESA) were used to assess the suitability of the proposed analytical method. We extensively analyzed the synthesized Co<img>Fe LDH/cellulose before and after the adsorption processes using XRD, FTIR, and SEM. We investigated the factors affecting the adsorption process, such as pH, adsorbent dose, concentrations of SMX and CFX and time. We studied six nonlinear adsorption isotherm models at pH 5 using Co<img>Fe LDH, which showed maximum adsorption capacities (qmax) of 272.13 mg/g for SMX and 208.00 mg/g for CFX. Kinetic studies were also conducted. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was performed on Vero cells in direct contact with LDH nanocomposites to evaluate the cytotoxicity and side effects of cellulose-based Co<img>Fe LDH. The cellulose-based Co<img>Fe LDH nanocomposite demonstrated excellent cytocompatibility and less cytotoxic effects on the tested cell line. These results validate the potential use of these unique LDH-based cellulose cytocompatible biomaterials for water treatment applications. The cost of the prepared adsorbents was investigated.</p></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140918543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marine Bonnet , Valentin Robin , Flora Parrotin , Niya Grozeva , Nicolas Seigneur , Munkh-Erdene Batbaatar , Michael Descostes
{"title":"Influence of clay minerals on pH and major cation concentrations in acid-leached sands: Column experiments and reactive-transport modeling","authors":"Marine Bonnet , Valentin Robin , Flora Parrotin , Niya Grozeva , Nicolas Seigneur , Munkh-Erdene Batbaatar , Michael Descostes","doi":"10.1016/j.jconhyd.2024.104363","DOIUrl":"10.1016/j.jconhyd.2024.104363","url":null,"abstract":"<div><p>A series of laboratory experiments are conducted to simulate the acidification and subsequent recovery of a sand aquifer exploited by <em>in situ</em> recovery (ISR) mining. A sulfuric acid solution (pH 2) is first injected into a column packed with sand from the Zoovch Ovoo uranium roll front deposit (Mongolia). Solutions representative of local groundwater or enriched in cations (Na<sup>+</sup>, Mg<sup>2+</sup>) are then circulated through the column to simulate the inflow of aquifer water. pH and major ion concentrations (Na<sup>+</sup>, Cl<sup>−</sup>, <span><math><msubsup><mi>SO</mi><mn>4</mn><mrow><mn>2</mn><mo>−</mo></mrow></msubsup></math></span>, Ca<sup>2+</sup>, Mg<sup>2+</sup>, K<sup>+</sup>) measured at the column outlet reproduce the overall evolution of porewater chemistry observed in the field. The presence of minor quantities of swelling clay minerals (≈6 wt% smectite) is shown to exert an important influence on the behavior of inorganic cations, particularly H<sup>+</sup>, <em>via</em> ion-exchange reactions. Numerical models that consider ion-exchange on smectite as the sole solid-solution interaction are able to reproduce variations in pH and cation concentrations in the column experiments. This highlights the importance of clay minerals in controlling H<sup>+</sup> mobility and demonstrates that sand from the studied aquifer can be described to a first order as an ion-exchanger. The present study confirms the key role of clay minerals in controlling water chemistry in acidic environments through ion-exchange processes. In a context of managing the long-term environmental footprint of industrial and mining activities (ISR, acid mine drainage…), this work will bring insights for modeling choices and identification of key parameters to help operators to define their production and/or remediation strategies.</p></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169772224000676/pdfft?md5=452f203a7314e216c59a3869cf708b95&pid=1-s2.0-S0169772224000676-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141031764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marwa H. Gouda , M.M. Khowdiary , Hind Alsnani , N. Roushdy , M. Elsayed Youssef , Mohamed Elnouby , Noha A. Elessawy
{"title":"Adsorption and antibacterial studies of a novel hydrogel adsorbent based on ternary eco-polymers doped with sulfonated graphene oxide developed from upcycled plastic waste","authors":"Marwa H. Gouda , M.M. Khowdiary , Hind Alsnani , N. Roushdy , M. Elsayed Youssef , Mohamed Elnouby , Noha A. Elessawy","doi":"10.1016/j.jconhyd.2024.104362","DOIUrl":"https://doi.org/10.1016/j.jconhyd.2024.104362","url":null,"abstract":"<div><p>A novel ternary blended polymer composed of cost-effective and readily available polymers was synthesized using poly (vinyl alcohol) (PVA), iota carrageenan (IC), and poly (vinyl pyrrolidone) (PVP). Sulfonated graphene oxide (SGO), prepared from recycled drinking water bottles, was utilized as a doping agent. Varying amounts (1–3 wt%) were combined into the polymer matrix. The produced hydrogel film was examined as a potential adsorbent hydrogel film for the removal of methylene blue (MB) and Gentamicin sulfate (GMS) antibiotic from an aqueous solution. The experimental results demonstrate that the presence of SGO significantly increased the adsorption efficiency of PVA/IC/PVP hydrogel film. The antimicrobial tests revealed that the PVA/IC/PVP-3% SGO hydrogel film exhibited the most potent activity against all the tested pathogenic bacteria. However, the adsorption results for MB and GMS showed that the addition of 3 wt% SGO resulted in a removal percentage that was a two fold increase in the removal percentage compared with the undoped PVA/IC/PVP hydrogel film. Furthermore, the response surface methodology (RSM) model was utilized to examine and optimize several operating parameters, including time, pH of the solution, and initial pollutant concentration. The adsorption kinetics were better characterized by the pseudo-second-order kinetics model. The composite film containing 3 wt% SGO had a maximum adsorption capacity of 606 mg g<sup>−1</sup> for MB and 654 mg g<sup>−1</sup> for GMS, respectively. The generated nanocomposite hydrogel film demonstrated promising potential for application in water purification systems.</p></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140906466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emmanuel Tertre , Thomas Dabat , Jingyi Wang , Sébastien Savoye , Fabien Hubert , Baptiste Dazas , Christophe Tournassat , Carl I. Steefel , Eric Ferrage
{"title":"Influence of salinity gradients on the diffusion of water and ionic species in dual porosity clay samples","authors":"Emmanuel Tertre , Thomas Dabat , Jingyi Wang , Sébastien Savoye , Fabien Hubert , Baptiste Dazas , Christophe Tournassat , Carl I. Steefel , Eric Ferrage","doi":"10.1016/j.jconhyd.2024.104357","DOIUrl":"https://doi.org/10.1016/j.jconhyd.2024.104357","url":null,"abstract":"<div><p>Most of the available data on diffusion in natural clayey rocks consider tracer diffusion in the absence of a salinity gradient despite the fact that such gradients are frequently found in natural and engineered subsurface environments. To assess the role of such gradients on the diffusion properties of clayey materials, through-diffusion experiments were carried out in the presence and absence of a salinity gradient using salt-diffusion and radioisotope tracer techniques. The experiments were carried out with vermiculite samples that contained equal proportions of interparticle and interlayer porosities so as to assess also the role played by the two types of porosities on the diffusion of water and ions. Data were interpreted using both a classical Fickian diffusion model and with a reactive transport code, CrunchClay that can handle multi-porosity diffusion processes in the presence of charged surfaces. By combining experimental and simulated data, we demonstrated that (i) the flux of water diffusing through vermiculite interlayer porosity was minor compared to that diffusing through the interparticle porosity, and (ii) a model considering at least three types of porous volumes (interlayer, interparticle diffuse layer, and bulk interparticle) was necessary to reproduce consistently the variations of neutral and charged species diffusion as a function of salinity gradient conditions.</p></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169772224000615/pdfft?md5=4473e86c5498e0e5d0071b28d806bcc1&pid=1-s2.0-S0169772224000615-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140901486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Alps at risk: High-mountain lakes as reservoirs of persistent and emerging contaminants","authors":"Paolo Pastorino , Damià Barceló , Marino Prearo","doi":"10.1016/j.jconhyd.2024.104361","DOIUrl":"https://doi.org/10.1016/j.jconhyd.2024.104361","url":null,"abstract":"<div><p>Despite their remote locations, high-mountain lakes located in the Alps are vulnerable to chemical pollution. This discussion explores the important aspects of these lakes as repositories of Persistent Organic Pollutants (POPs) and Contaminants of Emerging Concern (CECs), elucidating their sources and implications for both the environment and human health. In terms of the presence of POPs in high-altitude lakes of the Alps, 14 studies have been identified examining the occurrence of polychlorinated biphenyls, dichlorodiphenyltrichloroethane an its metabolites, polybrominated diphenyl ethers, and polycyclic aromatic hydrocarbons. The bulk of research on POPs in high-mountain lakes is concentrated in the Italian Alps (63%), followed by Switzerland (22%), Austria (12%), and France (3%), respectively. Sediment is predominantly investigated (65%), followed by fish (33%) and water (2%). Similarly, in relation to the presence of CECs in high-mountain lakes of the Alps, six studies have been identified investigating the occurrence of musks, perfluorinated compounds, and microplastics. Investigations into CECs predominantly occur in Switzerland (42%), France (33%), and Italy (25%), with fish samples (muscle and liver) being the primary focus (46%), followed by sediment (17%) and water (17%). Other compartments like zooplankton, frog/tadpoles, and snow remain less explored. The discussion also shed light on various pathways through which pollutants reach these remote landscapes, including atmospheric transport, glacial meltwater, and human activities. Protecting these pristine peaks demands concerted efforts encompassing ongoing research, vigilant monitoring, and dedicated conservation initiatives.</p></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140910170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Data driven AI (artificial intelligence) detection furnish economic pathways for microplastics","authors":"Mamta Latwal, Shefali Arora, K.S.R. Murthy","doi":"10.1016/j.jconhyd.2024.104365","DOIUrl":"10.1016/j.jconhyd.2024.104365","url":null,"abstract":"<div><p>Microplastics pollution is killing human life, contaminating our oceans, and lasting for longer in the environment than it is used. Microplastics have contaminated the geochemistry and turned the water system into trash barrel. Its detection in water is easy in comparison to soil and air so the attention of researchers is focused on it for now. Being very small in size, microplastics can easily cross the water filtration system and end up in the ocean or lakes and become the prospective challenge to aquatic life. This review piece provides the hot research theme and current advances in the field of microplastics and their eradication through the virtual world of artificial intelligence (AI) <em>because Microplastics have confrontation with clean water tactics.</em></p></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141032468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microplastic prevalence and human exposure in the bottled drinking water in the west Godavari region of Andhra Pradesh, India","authors":"Vijaykumar Sekar , Sheha Shaji , Baranidharan Sundaram","doi":"10.1016/j.jconhyd.2024.104346","DOIUrl":"https://doi.org/10.1016/j.jconhyd.2024.104346","url":null,"abstract":"<div><p>Microplastics (MPs) are widespread, minute plastic particles present in various aquatic environments, raising concerns about their effect on human health and ecosystems. The detrimental effects of MPs on the environment, include the contamination of ecosystems, harm to aquatic life through ingestion, potential disruption of food chains, and long-term ecological consequences. Despite numerous studies confirming the MP's presence in aquatic environments, research specifically focused on MPs in bottled drinking water (BDW) is limited. Research on MPs in drinking water is vital to assess potential health risks and develop strategies for ensuring water safety and quality. This study fills a research gap by investigating microplastics (MPs) in nine brands of BDW in the West Godavari region of Andhra Pradesh, India. The average MP concentration in BDW was found to be 2.89 ± 0.48 items/L, with fibers being the predominant shape and sizes ranging from 500 to 1000 μm. Transparent and blue were the most common colors. From ATR-FTIR analysis, the dominant polymer found was polypropylene (PP) followed by polyethylene terephthalate (PET). The human risk assessment was also calculated using the formula of Estimated daily intake (EDI) and Lifetime intake (LTI). The calculation found that the EDI of MPs for children and adults ranged from 0.041 to 0.291 MPs per kilogram per day and 0.019 to 0.133 MPs per kilogram per day, respectively. The mean LTI of MP consumption of an individual, ranged from 17,958 to 2,54,861 MPs, considering an average age of 75 years. The current findings offer valuable information for ongoing evaluations of the potential human risks linked to MP exposure.</p></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140644529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mengxia Wang , Qi Han , Meng Zhang , Xun Liu , Bei Liu , Zhongying Wang
{"title":"Efficient remediation of mercury-contaminated groundwater using MoS2 nanosheets in an in situ reactive zone","authors":"Mengxia Wang , Qi Han , Meng Zhang , Xun Liu , Bei Liu , Zhongying Wang","doi":"10.1016/j.jconhyd.2024.104347","DOIUrl":"https://doi.org/10.1016/j.jconhyd.2024.104347","url":null,"abstract":"<div><p>Mercury contamination in groundwater is a serious global environmental issue that poses threats to human and environmental health. While MoS<sub>2</sub> nanosheets have been proven promising in removing Hg from groundwater, an effective tool for <em>in situ</em> groundwater remediation is still needed. In this study, we investigated the transport and retention behavior of MoS<sub>2</sub> nanosheets in sand column, and employed the formed MoS<sub>2</sub> <em>in situ</em> reactive zone (<em>IRZ</em>) for the remediation of Hg-contaminated groundwater. Breakthrough test revealed that high flow velocity and MoS<sub>2</sub> initial concentration promoted the transport of MoS<sub>2</sub> in sand column, while the addition of Ca ions increased the retention of MoS<sub>2</sub>. In Hg removal experiments, the groundwater flow velocity did not influence the Hg removal capacity due to the fast reaction rate between MoS<sub>2</sub> and Hg. With an optimized MoS<sub>2</sub> loading, MoS<sub>2</sub> <em>IRZ</em> effectively reduced the Hg effluent concentration down to <1 μg/L without apparent Hg remobilization. Additionally, flake-like MoS<sub>2</sub> employed in this study showed much better Hg removal performance than flower-like and bulk MoS<sub>2</sub>, as well as other reported materials, with the Hg removal capacity a few to tens of times higher than those materials. These results suggest that MoS<sub>2</sub> nanosheets have the potential to be an efficient <em>IRZ</em> reactive material for <em>in situ</em> remediation of Hg in contaminated groundwater.</p></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140633340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}